关于可表示 t 的和集的大小和结构

IF 0.7 3区 数学 Q2 MATHEMATICS
Christian Táfula
{"title":"关于可表示 t 的和集的大小和结构","authors":"Christian Táfula","doi":"10.1016/j.disc.2024.114295","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>A</mi><mo>⊆</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub></math></span> be a finite set with minimum element 0, maximum element <em>m</em>, and <em>ℓ</em> elements strictly in between. Write <span><math><msup><mrow><mo>(</mo><mi>h</mi><mi>A</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup></math></span> for the set of integers that can be written in at least <em>t</em> ways as a sum of <em>h</em> elements of <em>A</em>. We prove that <span><math><msup><mrow><mo>(</mo><mi>h</mi><mi>A</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup></math></span> is “structured” for<span><span><span><math><mi>h</mi><mo>≥</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac><mi>m</mi><mi>ℓ</mi><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>ℓ</mi></mrow></msup></math></span></span></span> (as <span><math><mi>ℓ</mi><mo>→</mo><mo>∞</mo></math></span>, <span><math><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>ℓ</mi></mrow></msup><mo>→</mo><mo>∞</mo></math></span>), and prove a similar theorem on the size and structure of <span><math><mi>A</mi><mo>⊆</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> for <em>h</em> sufficiently large. Moreover, we construct a family of sets <span><math><mi>A</mi><mo>=</mo><mi>A</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>⊆</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub></math></span> for which <span><math><msup><mrow><mo>(</mo><mi>h</mi><mi>A</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup></math></span> is not structured for <span><math><mi>h</mi><mo>≪</mo><mi>m</mi><mi>ℓ</mi><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>ℓ</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114295"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the size and structure of t-representable sumsets\",\"authors\":\"Christian Táfula\",\"doi\":\"10.1016/j.disc.2024.114295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>A</mi><mo>⊆</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub></math></span> be a finite set with minimum element 0, maximum element <em>m</em>, and <em>ℓ</em> elements strictly in between. Write <span><math><msup><mrow><mo>(</mo><mi>h</mi><mi>A</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup></math></span> for the set of integers that can be written in at least <em>t</em> ways as a sum of <em>h</em> elements of <em>A</em>. We prove that <span><math><msup><mrow><mo>(</mo><mi>h</mi><mi>A</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup></math></span> is “structured” for<span><span><span><math><mi>h</mi><mo>≥</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac><mi>m</mi><mi>ℓ</mi><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>ℓ</mi></mrow></msup></math></span></span></span> (as <span><math><mi>ℓ</mi><mo>→</mo><mo>∞</mo></math></span>, <span><math><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>ℓ</mi></mrow></msup><mo>→</mo><mo>∞</mo></math></span>), and prove a similar theorem on the size and structure of <span><math><mi>A</mi><mo>⊆</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> for <em>h</em> sufficiently large. Moreover, we construct a family of sets <span><math><mi>A</mi><mo>=</mo><mi>A</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>⊆</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub></math></span> for which <span><math><msup><mrow><mo>(</mo><mi>h</mi><mi>A</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup></math></span> is not structured for <span><math><mi>h</mi><mo>≪</mo><mi>m</mi><mi>ℓ</mi><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>ℓ</mi></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114295\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24004266\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004266","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 A⊆Z≥0 是一个有限集合,最小元素为 0,最大元素为 m,ℓ 元素严格介于两者之间。我们证明 (hA)(t) 在 h≥(1+o(1))1emℓt1/ℓ (如 ℓ→∞, t1/ℓ→∞)时是 "结构化 "的,并证明了关于 h 足够大时 A⊆Zd 的大小和结构的类似定理。此外,我们还构造了一个集合族 A=A(m,ℓ,t)⊆Z≥0,其中 (hA)(t) 在 h≪mℓt1/ℓ 时没有结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the size and structure of t-representable sumsets
Let AZ0 be a finite set with minimum element 0, maximum element m, and elements strictly in between. Write (hA)(t) for the set of integers that can be written in at least t ways as a sum of h elements of A. We prove that (hA)(t) is “structured” forh(1+o(1))1emt1/ (as , t1/), and prove a similar theorem on the size and structure of AZd for h sufficiently large. Moreover, we construct a family of sets A=A(m,,t)Z0 for which (hA)(t) is not structured for hmt1/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信