Benjamin Planque , Lucas Bas , Martin Biuw , Marie-Anne Blanchet , Bjarte Bogstad , Elena Eriksen , Hilaire Drouineau , Cecilie Hansen , Bérengère Husson , Erik Askov Mousing , Christian Mullon , Torstein Pedersen , Morten D. Skogen , Aril Slotte , Arved Staby , Ulf Lindstrøm
{"title":"挪威海和巴伦支海海洋哺乳动物、鱼类和渔业的食物网评估模型","authors":"Benjamin Planque , Lucas Bas , Martin Biuw , Marie-Anne Blanchet , Bjarte Bogstad , Elena Eriksen , Hilaire Drouineau , Cecilie Hansen , Bérengère Husson , Erik Askov Mousing , Christian Mullon , Torstein Pedersen , Morten D. Skogen , Aril Slotte , Arved Staby , Ulf Lindstrøm","doi":"10.1016/j.pocean.2024.103361","DOIUrl":null,"url":null,"abstract":"<div><div>The Norwegian and Barents Seas host large commercial fish populations that interact with each other, as well as marine mammal populations that feed on plankton and fish. Quantifying the past dynamics of these interacting species, and of the associated fisheries in the Norwegian and Barents Sea is of high relevance to support ecosystem-based management. The purpose of this work is to develop a food-web model of intermediate complexity and perform a quantitative assessment of the Norwegian and Barents Sea ecosystems in the period 1988–2021 in a manner that is consistent with existing data and expert knowledge, and that is internally coherent. For this purpose, we use the modelling framework of chance and necessity (CaN). The model construction follows an iterative process that allows to confront, discuss, and resolve multiple issues as well as to recognise uncertainties in expert knowledge, data, and input parameters. We show that it is possible to reconstruct the past dynamics of the food-web only if recognising that some data and assumptions are more uncertain than originally thought. According to this assessment, consumption by commercial fish and catch by fisheries jointly increased until the early 2010s, after which consumption by fish declined and catches by fisheries stabilised. On an annual basis, fish have consumed an average of 135.5 million tonnes of resources (including 9.5 million tonnes of fish), marine mammals have consumed an average of 22 million tonnes of which 50 % (11 million tonnes) were fish. Fisheries and hunting have captured an average of 4.4 million tonnes of fish and 7 thousand tonnes of marine mammals.</div></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"229 ","pages":"Article 103361"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A food-web assessment model for marine mammals, fish, and fisheries in the Norwegian and Barents Seas\",\"authors\":\"Benjamin Planque , Lucas Bas , Martin Biuw , Marie-Anne Blanchet , Bjarte Bogstad , Elena Eriksen , Hilaire Drouineau , Cecilie Hansen , Bérengère Husson , Erik Askov Mousing , Christian Mullon , Torstein Pedersen , Morten D. Skogen , Aril Slotte , Arved Staby , Ulf Lindstrøm\",\"doi\":\"10.1016/j.pocean.2024.103361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Norwegian and Barents Seas host large commercial fish populations that interact with each other, as well as marine mammal populations that feed on plankton and fish. Quantifying the past dynamics of these interacting species, and of the associated fisheries in the Norwegian and Barents Sea is of high relevance to support ecosystem-based management. The purpose of this work is to develop a food-web model of intermediate complexity and perform a quantitative assessment of the Norwegian and Barents Sea ecosystems in the period 1988–2021 in a manner that is consistent with existing data and expert knowledge, and that is internally coherent. For this purpose, we use the modelling framework of chance and necessity (CaN). The model construction follows an iterative process that allows to confront, discuss, and resolve multiple issues as well as to recognise uncertainties in expert knowledge, data, and input parameters. We show that it is possible to reconstruct the past dynamics of the food-web only if recognising that some data and assumptions are more uncertain than originally thought. According to this assessment, consumption by commercial fish and catch by fisheries jointly increased until the early 2010s, after which consumption by fish declined and catches by fisheries stabilised. On an annual basis, fish have consumed an average of 135.5 million tonnes of resources (including 9.5 million tonnes of fish), marine mammals have consumed an average of 22 million tonnes of which 50 % (11 million tonnes) were fish. Fisheries and hunting have captured an average of 4.4 million tonnes of fish and 7 thousand tonnes of marine mammals.</div></div>\",\"PeriodicalId\":20620,\"journal\":{\"name\":\"Progress in Oceanography\",\"volume\":\"229 \",\"pages\":\"Article 103361\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079661124001678\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661124001678","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
A food-web assessment model for marine mammals, fish, and fisheries in the Norwegian and Barents Seas
The Norwegian and Barents Seas host large commercial fish populations that interact with each other, as well as marine mammal populations that feed on plankton and fish. Quantifying the past dynamics of these interacting species, and of the associated fisheries in the Norwegian and Barents Sea is of high relevance to support ecosystem-based management. The purpose of this work is to develop a food-web model of intermediate complexity and perform a quantitative assessment of the Norwegian and Barents Sea ecosystems in the period 1988–2021 in a manner that is consistent with existing data and expert knowledge, and that is internally coherent. For this purpose, we use the modelling framework of chance and necessity (CaN). The model construction follows an iterative process that allows to confront, discuss, and resolve multiple issues as well as to recognise uncertainties in expert knowledge, data, and input parameters. We show that it is possible to reconstruct the past dynamics of the food-web only if recognising that some data and assumptions are more uncertain than originally thought. According to this assessment, consumption by commercial fish and catch by fisheries jointly increased until the early 2010s, after which consumption by fish declined and catches by fisheries stabilised. On an annual basis, fish have consumed an average of 135.5 million tonnes of resources (including 9.5 million tonnes of fish), marine mammals have consumed an average of 22 million tonnes of which 50 % (11 million tonnes) were fish. Fisheries and hunting have captured an average of 4.4 million tonnes of fish and 7 thousand tonnes of marine mammals.
期刊介绍:
Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.