Hongran Li , Hui Zhao , Chao Wei , Min Cao , Jian Zhang , Heng Zhang , Dongqing Yuan
{"title":"利用高光谱图像和深度学习模型评估水质环境等级:中国江苏案例研究","authors":"Hongran Li , Hui Zhao , Chao Wei , Min Cao , Jian Zhang , Heng Zhang , Dongqing Yuan","doi":"10.1016/j.ecoinf.2024.102854","DOIUrl":null,"url":null,"abstract":"<div><div>Water quality assessment is essential for effective environmental management, yet traditional methods such as chemical sampling are often labor-intensive and inefficient for large-scale, continual monitoring. This study addresses these limitations by leveraging hyperspectral images (HSIs) analysis and introducing a capsule network (CapsNet) model enhanced with a multidimensional integration attention (MDIA) mechanism. The model is specifically designed to integrate both channel and spatial information, enabling precise water quality grade assessment by detecting subtle features within HSIs data. To validate the performance of the model, spectral data from 5 water quality regions are collected and processed via a UAV-carried spectrometer, with 4503 water quality data samples. Rigorous classification experiments demonstrated that the model achieves 98.73 % accuracy, with an average improvement of 4.89 % compared with the other models. This approach significantly improves decision support systems for water resource management, facilitating the sustainable use of water resources.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"84 ","pages":"Article 102854"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing water quality environmental grades using hyperspectral images and a deep learning model: A case study in Jiangsu, China\",\"authors\":\"Hongran Li , Hui Zhao , Chao Wei , Min Cao , Jian Zhang , Heng Zhang , Dongqing Yuan\",\"doi\":\"10.1016/j.ecoinf.2024.102854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water quality assessment is essential for effective environmental management, yet traditional methods such as chemical sampling are often labor-intensive and inefficient for large-scale, continual monitoring. This study addresses these limitations by leveraging hyperspectral images (HSIs) analysis and introducing a capsule network (CapsNet) model enhanced with a multidimensional integration attention (MDIA) mechanism. The model is specifically designed to integrate both channel and spatial information, enabling precise water quality grade assessment by detecting subtle features within HSIs data. To validate the performance of the model, spectral data from 5 water quality regions are collected and processed via a UAV-carried spectrometer, with 4503 water quality data samples. Rigorous classification experiments demonstrated that the model achieves 98.73 % accuracy, with an average improvement of 4.89 % compared with the other models. This approach significantly improves decision support systems for water resource management, facilitating the sustainable use of water resources.</div></div>\",\"PeriodicalId\":51024,\"journal\":{\"name\":\"Ecological Informatics\",\"volume\":\"84 \",\"pages\":\"Article 102854\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574954124003960\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124003960","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Assessing water quality environmental grades using hyperspectral images and a deep learning model: A case study in Jiangsu, China
Water quality assessment is essential for effective environmental management, yet traditional methods such as chemical sampling are often labor-intensive and inefficient for large-scale, continual monitoring. This study addresses these limitations by leveraging hyperspectral images (HSIs) analysis and introducing a capsule network (CapsNet) model enhanced with a multidimensional integration attention (MDIA) mechanism. The model is specifically designed to integrate both channel and spatial information, enabling precise water quality grade assessment by detecting subtle features within HSIs data. To validate the performance of the model, spectral data from 5 water quality regions are collected and processed via a UAV-carried spectrometer, with 4503 water quality data samples. Rigorous classification experiments demonstrated that the model achieves 98.73 % accuracy, with an average improvement of 4.89 % compared with the other models. This approach significantly improves decision support systems for water resource management, facilitating the sustainable use of water resources.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.