{"title":"壳管式聚合物中空纤维热交换器作为油冷却器的热性能","authors":"","doi":"10.1016/j.csite.2024.105329","DOIUrl":null,"url":null,"abstract":"<div><div>Motor oil must be appropriately treated in motors, and aluminum plate heat exchangers are used to cool it. An aluminum heat exchanger is an additional part of the oil treatment module, which increases its size and weight. Two compact plastic shell-and-tube heat exchangers were tested alongside with aluminum heat exchanger to evaluate the efficiency of the plastic cooling core inside the oil module. A total of 63 experimental points were tested on three heat exchangers with good thermal balance (discrepancy of about 1,8 %), and the data were used to evaluate the heat transfer coefficients. While plastic unit PA11 showed the heat outputs exceeding the heat output of the aluminum plate unit by about 7 %, the pressure drops were about ten times higher. The unit PEEK showed good performance and pressure drops on the oil side, but the heat transfer was limited by a small heat transfer surface. Analysis of thermal resistances confirmed that the thermal resistance between the wall and the oil is dominant due to the oil's low thermal conductivity and high viscosity. The results showed that optimization of the fiber structures is needed, aiming to increase the oil flow around the fiber structures.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal performance of shell-and-tube polymeric hollow fiber heat exchangers as oil coolers\",\"authors\":\"\",\"doi\":\"10.1016/j.csite.2024.105329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motor oil must be appropriately treated in motors, and aluminum plate heat exchangers are used to cool it. An aluminum heat exchanger is an additional part of the oil treatment module, which increases its size and weight. Two compact plastic shell-and-tube heat exchangers were tested alongside with aluminum heat exchanger to evaluate the efficiency of the plastic cooling core inside the oil module. A total of 63 experimental points were tested on three heat exchangers with good thermal balance (discrepancy of about 1,8 %), and the data were used to evaluate the heat transfer coefficients. While plastic unit PA11 showed the heat outputs exceeding the heat output of the aluminum plate unit by about 7 %, the pressure drops were about ten times higher. The unit PEEK showed good performance and pressure drops on the oil side, but the heat transfer was limited by a small heat transfer surface. Analysis of thermal resistances confirmed that the thermal resistance between the wall and the oil is dominant due to the oil's low thermal conductivity and high viscosity. The results showed that optimization of the fiber structures is needed, aiming to increase the oil flow around the fiber structures.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X24013601\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24013601","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Thermal performance of shell-and-tube polymeric hollow fiber heat exchangers as oil coolers
Motor oil must be appropriately treated in motors, and aluminum plate heat exchangers are used to cool it. An aluminum heat exchanger is an additional part of the oil treatment module, which increases its size and weight. Two compact plastic shell-and-tube heat exchangers were tested alongside with aluminum heat exchanger to evaluate the efficiency of the plastic cooling core inside the oil module. A total of 63 experimental points were tested on three heat exchangers with good thermal balance (discrepancy of about 1,8 %), and the data were used to evaluate the heat transfer coefficients. While plastic unit PA11 showed the heat outputs exceeding the heat output of the aluminum plate unit by about 7 %, the pressure drops were about ten times higher. The unit PEEK showed good performance and pressure drops on the oil side, but the heat transfer was limited by a small heat transfer surface. Analysis of thermal resistances confirmed that the thermal resistance between the wall and the oil is dominant due to the oil's low thermal conductivity and high viscosity. The results showed that optimization of the fiber structures is needed, aiming to increase the oil flow around the fiber structures.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.