Yangjian He , Libi Fu , Qiyi Chen , Yu Zhang , Chenxin Shen , Yongqian Shi , Shuchao Cao
{"title":"建筑物瓶颈对涉及模拟残疾人的人群动态的影响","authors":"Yangjian He , Libi Fu , Qiyi Chen , Yu Zhang , Chenxin Shen , Yongqian Shi , Shuchao Cao","doi":"10.1016/j.physa.2024.130157","DOIUrl":null,"url":null,"abstract":"<div><div>With the development of urbanization and the growth of population, there is a growing demand for safety in public building facilities. As one of the essential building components of urban architecture, bottlenecks have a significant impact on the evacuation efficiency of crowds. Furthermore, the heterogeneity of crowds also contributes to the complexity of crowd movement through bottlenecks, while aggravating the magnitude of congestion induced by bottlenecks. The objective of this paper is to explore the movement characteristics of heterogeneous crowds passing through a corridor with a bottleneck by conducting a controlled experiment. There were three variables in this experiment, namely the individual categories (i.e., able-bodied individuals, simulated individuals on crutches and simulated wheelchair users), bottleneck width (i.e., 1.2, 1.6 and 2.0 m) and proportion of simulated disabilities in crowds (i.e., 0 %, 5 % and 10 %). Then offset angle, passing efficiency, fundamental diagram, etc., were analyzed. In trials involving simulated individuals on crutches, a higher detouring degree is observed compared to trials involving simulated wheelchair users or mixed groups of two types of simulated disabilities. There is an increase in flow rate induced by increasing the bottleneck width and decreasing the proportion of simulated disabilities. The passing efficiency at the upstream of the bottleneck in all tests is primarily influenced by the bottleneck width, while by the type and proportion of simulated disabilities at the downstream or inside the bottleneck. The findings are intended to complement the dynamic theory of heterogeneous crowds at building bottlenecks, while providing a reference for congestion control of crowds at bottlenecks.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"654 ","pages":"Article 130157"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of building bottlenecks on crowd dynamics involving individuals with simulated disabilities\",\"authors\":\"Yangjian He , Libi Fu , Qiyi Chen , Yu Zhang , Chenxin Shen , Yongqian Shi , Shuchao Cao\",\"doi\":\"10.1016/j.physa.2024.130157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the development of urbanization and the growth of population, there is a growing demand for safety in public building facilities. As one of the essential building components of urban architecture, bottlenecks have a significant impact on the evacuation efficiency of crowds. Furthermore, the heterogeneity of crowds also contributes to the complexity of crowd movement through bottlenecks, while aggravating the magnitude of congestion induced by bottlenecks. The objective of this paper is to explore the movement characteristics of heterogeneous crowds passing through a corridor with a bottleneck by conducting a controlled experiment. There were three variables in this experiment, namely the individual categories (i.e., able-bodied individuals, simulated individuals on crutches and simulated wheelchair users), bottleneck width (i.e., 1.2, 1.6 and 2.0 m) and proportion of simulated disabilities in crowds (i.e., 0 %, 5 % and 10 %). Then offset angle, passing efficiency, fundamental diagram, etc., were analyzed. In trials involving simulated individuals on crutches, a higher detouring degree is observed compared to trials involving simulated wheelchair users or mixed groups of two types of simulated disabilities. There is an increase in flow rate induced by increasing the bottleneck width and decreasing the proportion of simulated disabilities. The passing efficiency at the upstream of the bottleneck in all tests is primarily influenced by the bottleneck width, while by the type and proportion of simulated disabilities at the downstream or inside the bottleneck. The findings are intended to complement the dynamic theory of heterogeneous crowds at building bottlenecks, while providing a reference for congestion control of crowds at bottlenecks.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"654 \",\"pages\":\"Article 130157\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437124006666\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124006666","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The effect of building bottlenecks on crowd dynamics involving individuals with simulated disabilities
With the development of urbanization and the growth of population, there is a growing demand for safety in public building facilities. As one of the essential building components of urban architecture, bottlenecks have a significant impact on the evacuation efficiency of crowds. Furthermore, the heterogeneity of crowds also contributes to the complexity of crowd movement through bottlenecks, while aggravating the magnitude of congestion induced by bottlenecks. The objective of this paper is to explore the movement characteristics of heterogeneous crowds passing through a corridor with a bottleneck by conducting a controlled experiment. There were three variables in this experiment, namely the individual categories (i.e., able-bodied individuals, simulated individuals on crutches and simulated wheelchair users), bottleneck width (i.e., 1.2, 1.6 and 2.0 m) and proportion of simulated disabilities in crowds (i.e., 0 %, 5 % and 10 %). Then offset angle, passing efficiency, fundamental diagram, etc., were analyzed. In trials involving simulated individuals on crutches, a higher detouring degree is observed compared to trials involving simulated wheelchair users or mixed groups of two types of simulated disabilities. There is an increase in flow rate induced by increasing the bottleneck width and decreasing the proportion of simulated disabilities. The passing efficiency at the upstream of the bottleneck in all tests is primarily influenced by the bottleneck width, while by the type and proportion of simulated disabilities at the downstream or inside the bottleneck. The findings are intended to complement the dynamic theory of heterogeneous crowds at building bottlenecks, while providing a reference for congestion control of crowds at bottlenecks.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.