{"title":"应用于 CPV 的双轴太阳能跟踪器的模型参考自适应控制 (MRAC)","authors":"S.I. Palomino-Resendiz , M.A. Peñaloza-López , D.A. Flores-Hernández , C.U. Solís-Cervantes , R.L. Palomino-Resendiz","doi":"10.1016/j.solmat.2024.113225","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, the simulation of the behavior of an MRAC assisted solar tracker in solar trajectory tracking tasks has been developed for a prototype of a two-axis solar tracker that presents structural and performance characteristics capable of supporting PV, CPV, and HCPV-type technology. The proposal is numerically validated by developing an experimental methodology consisting of two stages. The first stage is associated with developing tests of the MRAC-assisted solar tracker to reproduce a solar trajectory (obtained offline by a numerical method) with and without the injection of disturbances (with dynamics equivalent to wind loads in reality), respectively. On the other hand, in the second stage, after replicating the conditions of the tests of stage one but with the assistance of a simple PID type controller, the analysis and comparison of the performance of each alternative is carried out, the above, in terms of tracking error or pointing accuracy. The results show that both alternatives are functional in the development of tests under favorable conditions. However, under conditions with disturbances, it can be noted that the MRAC reduces the tracking error by around 87% compared to PID control.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"279 ","pages":"Article 113225"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Reference Adaptive Control (MRAC) for dual-axis solar tracker applied in CPV\",\"authors\":\"S.I. Palomino-Resendiz , M.A. Peñaloza-López , D.A. Flores-Hernández , C.U. Solís-Cervantes , R.L. Palomino-Resendiz\",\"doi\":\"10.1016/j.solmat.2024.113225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, the simulation of the behavior of an MRAC assisted solar tracker in solar trajectory tracking tasks has been developed for a prototype of a two-axis solar tracker that presents structural and performance characteristics capable of supporting PV, CPV, and HCPV-type technology. The proposal is numerically validated by developing an experimental methodology consisting of two stages. The first stage is associated with developing tests of the MRAC-assisted solar tracker to reproduce a solar trajectory (obtained offline by a numerical method) with and without the injection of disturbances (with dynamics equivalent to wind loads in reality), respectively. On the other hand, in the second stage, after replicating the conditions of the tests of stage one but with the assistance of a simple PID type controller, the analysis and comparison of the performance of each alternative is carried out, the above, in terms of tracking error or pointing accuracy. The results show that both alternatives are functional in the development of tests under favorable conditions. However, under conditions with disturbances, it can be noted that the MRAC reduces the tracking error by around 87% compared to PID control.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"279 \",\"pages\":\"Article 113225\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824005373\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005373","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Model Reference Adaptive Control (MRAC) for dual-axis solar tracker applied in CPV
In this work, the simulation of the behavior of an MRAC assisted solar tracker in solar trajectory tracking tasks has been developed for a prototype of a two-axis solar tracker that presents structural and performance characteristics capable of supporting PV, CPV, and HCPV-type technology. The proposal is numerically validated by developing an experimental methodology consisting of two stages. The first stage is associated with developing tests of the MRAC-assisted solar tracker to reproduce a solar trajectory (obtained offline by a numerical method) with and without the injection of disturbances (with dynamics equivalent to wind loads in reality), respectively. On the other hand, in the second stage, after replicating the conditions of the tests of stage one but with the assistance of a simple PID type controller, the analysis and comparison of the performance of each alternative is carried out, the above, in terms of tracking error or pointing accuracy. The results show that both alternatives are functional in the development of tests under favorable conditions. However, under conditions with disturbances, it can be noted that the MRAC reduces the tracking error by around 87% compared to PID control.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.