金刚石多线锯切割光伏单晶硅片时线网可靠性研究

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Dameng Cheng , Yufeng Guo , Yufei Gao , Zhenyu Shi
{"title":"金刚石多线锯切割光伏单晶硅片时线网可靠性研究","authors":"Dameng Cheng ,&nbsp;Yufeng Guo ,&nbsp;Yufei Gao ,&nbsp;Zhenyu Shi","doi":"10.1016/j.solmat.2024.113247","DOIUrl":null,"url":null,"abstract":"<div><div>Diamond multi-wire slicing technology is the main method for producing the solar cell substrate based on monocrystalline silicon. To reduce the production cost and increase the production efficiency during the sawing process, the diameter of the diamond saw wire is becoming thinner, and the sawing speed is getting faster, which leads to an increasingly prominent problem of saw wire breakage during the slicing process. To understand the breaking characteristics of diamond saw wire and evaluate the reliability of the saw wire during the sawing process, the tensile testing of saw wires was carried out in this paper. And based on the Weibull function, the breaking force was analyzed statistically. A maximum tension force model for the saw wire during the sawing process was established. And based on the maximum tension force model and Weibull reliability function, the influence of various process parameters on the reliability of the wire web was analyzed. The results indicated that as the usage time of the saw wire increases, the breaking force gradually decreases and stabilizes. Compared to the fresh saw wire, the reliability of the used saw wires is significantly reduced. As the abrasive distribution density and the wire speed increases, the reliability of the wire web gradually increases. Conversely, as the feed speed and the pretension of the saw wire increase, the reliability of the wire web gradually decrease. The results of this paper provide a theoretical approach for assessing the reliability of diamond saw wire web during the sawing process. It also provides guidance for optimizing process parameters to enhance the reliability of the wire web.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"279 ","pages":"Article 113247"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the reliability of wire web in diamond multi-wire saw slicing photovoltaic monocrystalline silicon wafer\",\"authors\":\"Dameng Cheng ,&nbsp;Yufeng Guo ,&nbsp;Yufei Gao ,&nbsp;Zhenyu Shi\",\"doi\":\"10.1016/j.solmat.2024.113247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diamond multi-wire slicing technology is the main method for producing the solar cell substrate based on monocrystalline silicon. To reduce the production cost and increase the production efficiency during the sawing process, the diameter of the diamond saw wire is becoming thinner, and the sawing speed is getting faster, which leads to an increasingly prominent problem of saw wire breakage during the slicing process. To understand the breaking characteristics of diamond saw wire and evaluate the reliability of the saw wire during the sawing process, the tensile testing of saw wires was carried out in this paper. And based on the Weibull function, the breaking force was analyzed statistically. A maximum tension force model for the saw wire during the sawing process was established. And based on the maximum tension force model and Weibull reliability function, the influence of various process parameters on the reliability of the wire web was analyzed. The results indicated that as the usage time of the saw wire increases, the breaking force gradually decreases and stabilizes. Compared to the fresh saw wire, the reliability of the used saw wires is significantly reduced. As the abrasive distribution density and the wire speed increases, the reliability of the wire web gradually increases. Conversely, as the feed speed and the pretension of the saw wire increase, the reliability of the wire web gradually decrease. The results of this paper provide a theoretical approach for assessing the reliability of diamond saw wire web during the sawing process. It also provides guidance for optimizing process parameters to enhance the reliability of the wire web.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"279 \",\"pages\":\"Article 113247\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824005592\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005592","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

金刚石多线切片技术是生产单晶硅太阳能电池衬底的主要方法。在锯切过程中,为了降低生产成本,提高生产效率,金刚石锯丝的直径越来越细,锯切速度越来越快,导致锯切过程中锯丝断裂的问题日益突出。为了解金刚石锯丝的断裂特性,评估锯丝在锯切过程中的可靠性,本文对锯丝进行了拉伸试验。并根据 Weibull 函数对断裂力进行了统计分析。建立了锯切过程中锯丝的最大拉力模型。根据最大拉力模型和 Weibull 可靠性函数,分析了各种工艺参数对锯丝可靠性的影响。结果表明,随着锯丝使用时间的增加,断裂力逐渐减小并趋于稳定。与新锯丝相比,旧锯丝的可靠性明显降低。随着磨料分布密度和锯丝速度的增加,锯丝网的可靠性逐渐提高。相反,随着进料速度和锯丝预拉力的增加,线材的可靠性逐渐降低。本文的研究结果为评估锯切过程中金刚石锯网的可靠性提供了一种理论方法。它还为优化工艺参数以提高线材的可靠性提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the reliability of wire web in diamond multi-wire saw slicing photovoltaic monocrystalline silicon wafer
Diamond multi-wire slicing technology is the main method for producing the solar cell substrate based on monocrystalline silicon. To reduce the production cost and increase the production efficiency during the sawing process, the diameter of the diamond saw wire is becoming thinner, and the sawing speed is getting faster, which leads to an increasingly prominent problem of saw wire breakage during the slicing process. To understand the breaking characteristics of diamond saw wire and evaluate the reliability of the saw wire during the sawing process, the tensile testing of saw wires was carried out in this paper. And based on the Weibull function, the breaking force was analyzed statistically. A maximum tension force model for the saw wire during the sawing process was established. And based on the maximum tension force model and Weibull reliability function, the influence of various process parameters on the reliability of the wire web was analyzed. The results indicated that as the usage time of the saw wire increases, the breaking force gradually decreases and stabilizes. Compared to the fresh saw wire, the reliability of the used saw wires is significantly reduced. As the abrasive distribution density and the wire speed increases, the reliability of the wire web gradually increases. Conversely, as the feed speed and the pretension of the saw wire increase, the reliability of the wire web gradually decrease. The results of this paper provide a theoretical approach for assessing the reliability of diamond saw wire web during the sawing process. It also provides guidance for optimizing process parameters to enhance the reliability of the wire web.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信