二维时间分数反应-次扩散方程的完全离散 GL-ADI 方案

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yubing Jiang , Hu Chen , Chaobao Huang , Jian Wang
{"title":"二维时间分数反应-次扩散方程的完全离散 GL-ADI 方案","authors":"Yubing Jiang ,&nbsp;Hu Chen ,&nbsp;Chaobao Huang ,&nbsp;Jian Wang","doi":"10.1016/j.amc.2024.129147","DOIUrl":null,"url":null,"abstract":"<div><div>Alternating direction implicit (ADI) difference method for solving a 2D reaction-subdiffusion equation whose solution behaves a weak singularity at <span><math><mi>t</mi><mo>=</mo><mn>0</mn></math></span> is studied in this paper. A Grünwald-Letnikov (GL) approximation is used for the discretization of Caputo fractional derivative (of order <em>α</em>, with <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn></math></span>) on a uniform mesh. Stability and convergence of the fully discrete ADI scheme are rigorously established. With the help of a discrete fractional Gronwall inequality, we get the sharp error estimate. The stability in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm and the convergence of the GL-ADI scheme are strictly proved, where the convergent order is <span><math><mi>O</mi><mo>(</mo><mi>τ</mi><msubsup><mrow><mi>t</mi></mrow><mrow><mi>s</mi></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></msup><mo>+</mo><msubsup><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></math></span>. Numerical experiments are given to verify the theoretical analysis.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fully discrete GL-ADI scheme for 2D time-fractional reaction-subdiffusion equation\",\"authors\":\"Yubing Jiang ,&nbsp;Hu Chen ,&nbsp;Chaobao Huang ,&nbsp;Jian Wang\",\"doi\":\"10.1016/j.amc.2024.129147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alternating direction implicit (ADI) difference method for solving a 2D reaction-subdiffusion equation whose solution behaves a weak singularity at <span><math><mi>t</mi><mo>=</mo><mn>0</mn></math></span> is studied in this paper. A Grünwald-Letnikov (GL) approximation is used for the discretization of Caputo fractional derivative (of order <em>α</em>, with <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn></math></span>) on a uniform mesh. Stability and convergence of the fully discrete ADI scheme are rigorously established. With the help of a discrete fractional Gronwall inequality, we get the sharp error estimate. The stability in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm and the convergence of the GL-ADI scheme are strictly proved, where the convergent order is <span><math><mi>O</mi><mo>(</mo><mi>τ</mi><msubsup><mrow><mi>t</mi></mrow><mrow><mi>s</mi></mrow><mrow><mi>α</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></msup><mo>+</mo><msubsup><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></math></span>. Numerical experiments are given to verify the theoretical analysis.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324006088\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006088","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了交替方向隐式(ADI)差分法求解二维反应-次扩散方程,该方程的解在 t=0 处表现为弱奇点。在均匀网格上对 Caputo 分数导数(阶数 α,0<α<1)的离散化采用了 Grünwald-Letnikov (GL) 近似方法。严格确定了完全离散 ADI 方案的稳定性和收敛性。在离散分式 Gronwall 不等式的帮助下,我们得到了尖锐的误差估计。严格证明了 GL-ADI 方案在 L2 规范下的稳定性和收敛性,其中收敛阶数为 O(τtsα-1+τ2α+h12+h22)。数值实验验证了理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fully discrete GL-ADI scheme for 2D time-fractional reaction-subdiffusion equation
Alternating direction implicit (ADI) difference method for solving a 2D reaction-subdiffusion equation whose solution behaves a weak singularity at t=0 is studied in this paper. A Grünwald-Letnikov (GL) approximation is used for the discretization of Caputo fractional derivative (of order α, with 0<α<1) on a uniform mesh. Stability and convergence of the fully discrete ADI scheme are rigorously established. With the help of a discrete fractional Gronwall inequality, we get the sharp error estimate. The stability in L2 norm and the convergence of the GL-ADI scheme are strictly proved, where the convergent order is O(τtsα1+τ2α+h12+h22). Numerical experiments are given to verify the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信