{"title":"不同电力配给情景下智能家居的前一天多标准能源管理","authors":"","doi":"10.1016/j.ref.2024.100647","DOIUrl":null,"url":null,"abstract":"<div><div>With the recent global energy crisis, some countries have implemented electrical rationing (ER), making it necessary for smart homes to play a pivotal role in optimizing energy consumption and contributing to sustainable practices. To effectively manage smart home consumption, a stochastic programming approach for a grid-connected smart home energy management system (SHEMS) is proposed in this paper. The system includes PV, battery, diesel, and gas-based heating/cooling systems (HCS). Additionally, a demand response program (DRP) has been employed under time-of-use tariffs in the Syrian energy market. The main objective is to minimize the day-ahead expected cost and consumer discomfort by optimizing the operation of dispatchable units and loads. To manage the risks associated with the expected cost due to potential uncertainties in PV energy generation and electrical rationing programs, the conditional value-at-risk (CVaR) approach is adopted. Two methods are proposed to model the uncertainty in PV energy generation; interval bands and interval-based scenarios. The problem is modeled as a mixed-integer non-linear programming (MINLP) model, and coded in GAMS to test different cases. Based on the results obtained, substantial reductions reached 56.2% in worst-case cost scenarios when employing concurrent DRP-risk management.</div></div>","PeriodicalId":29780,"journal":{"name":"Renewable Energy Focus","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Day-ahead multi-criteria energy management of a smart home under different electrical rationing scenarios\",\"authors\":\"\",\"doi\":\"10.1016/j.ref.2024.100647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the recent global energy crisis, some countries have implemented electrical rationing (ER), making it necessary for smart homes to play a pivotal role in optimizing energy consumption and contributing to sustainable practices. To effectively manage smart home consumption, a stochastic programming approach for a grid-connected smart home energy management system (SHEMS) is proposed in this paper. The system includes PV, battery, diesel, and gas-based heating/cooling systems (HCS). Additionally, a demand response program (DRP) has been employed under time-of-use tariffs in the Syrian energy market. The main objective is to minimize the day-ahead expected cost and consumer discomfort by optimizing the operation of dispatchable units and loads. To manage the risks associated with the expected cost due to potential uncertainties in PV energy generation and electrical rationing programs, the conditional value-at-risk (CVaR) approach is adopted. Two methods are proposed to model the uncertainty in PV energy generation; interval bands and interval-based scenarios. The problem is modeled as a mixed-integer non-linear programming (MINLP) model, and coded in GAMS to test different cases. Based on the results obtained, substantial reductions reached 56.2% in worst-case cost scenarios when employing concurrent DRP-risk management.</div></div>\",\"PeriodicalId\":29780,\"journal\":{\"name\":\"Renewable Energy Focus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy Focus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S175500842400111X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy Focus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175500842400111X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Day-ahead multi-criteria energy management of a smart home under different electrical rationing scenarios
With the recent global energy crisis, some countries have implemented electrical rationing (ER), making it necessary for smart homes to play a pivotal role in optimizing energy consumption and contributing to sustainable practices. To effectively manage smart home consumption, a stochastic programming approach for a grid-connected smart home energy management system (SHEMS) is proposed in this paper. The system includes PV, battery, diesel, and gas-based heating/cooling systems (HCS). Additionally, a demand response program (DRP) has been employed under time-of-use tariffs in the Syrian energy market. The main objective is to minimize the day-ahead expected cost and consumer discomfort by optimizing the operation of dispatchable units and loads. To manage the risks associated with the expected cost due to potential uncertainties in PV energy generation and electrical rationing programs, the conditional value-at-risk (CVaR) approach is adopted. Two methods are proposed to model the uncertainty in PV energy generation; interval bands and interval-based scenarios. The problem is modeled as a mixed-integer non-linear programming (MINLP) model, and coded in GAMS to test different cases. Based on the results obtained, substantial reductions reached 56.2% in worst-case cost scenarios when employing concurrent DRP-risk management.