{"title":"活墙的热建模:综述","authors":"Eva Zavrl, Tej Žižak, Primož Poredoš, Ciril Arkar","doi":"10.1016/j.rser.2024.115009","DOIUrl":null,"url":null,"abstract":"<div><div>Green (vegetative) building envelopes are widely recognized for their environmental benefits. They have a positive effect on the energy efficiency of buildings and improve the urban microclimate, e.g. by mitigating urban heat island effects and increasing living comfort in cities. Living walls are considered an emerging technology and thus lack widely implemented and established models of thermal response. Experimentally oriented studies of living walls currently prevail, while research on modeling is scarce. This study presents a detailed review of the modeling of heat and mass transfer, considering the individual mechanisms separately. The review demonstrates that existing models primarily adopt heat and mass transfer mechanisms from green roof models. However, the adjustments may be inadequate for dense urban environments due to the vertical layout of living walls. Most studies also assume the uniformity of properties, such as growing media moisture content throughout columns and rows of living wall modular elements, although these properties can vary and significantly affect the thermal response. It is also highlighted that the influence of an open-air gap on living wall thermal response (and modeling) might be underestimated. Identified modeling gaps serve as recommendations for further development of mathematical models. This includes expanding considered boundary conditions, adjustments of oversimplified assumptions, and emphasizing the need for further validation, that will stimulate the development of living wall technology towards a sustainable, energy efficient and reliable technology.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"208 ","pages":"Article 115009"},"PeriodicalIF":16.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal modeling of living walls: A review\",\"authors\":\"Eva Zavrl, Tej Žižak, Primož Poredoš, Ciril Arkar\",\"doi\":\"10.1016/j.rser.2024.115009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Green (vegetative) building envelopes are widely recognized for their environmental benefits. They have a positive effect on the energy efficiency of buildings and improve the urban microclimate, e.g. by mitigating urban heat island effects and increasing living comfort in cities. Living walls are considered an emerging technology and thus lack widely implemented and established models of thermal response. Experimentally oriented studies of living walls currently prevail, while research on modeling is scarce. This study presents a detailed review of the modeling of heat and mass transfer, considering the individual mechanisms separately. The review demonstrates that existing models primarily adopt heat and mass transfer mechanisms from green roof models. However, the adjustments may be inadequate for dense urban environments due to the vertical layout of living walls. Most studies also assume the uniformity of properties, such as growing media moisture content throughout columns and rows of living wall modular elements, although these properties can vary and significantly affect the thermal response. It is also highlighted that the influence of an open-air gap on living wall thermal response (and modeling) might be underestimated. Identified modeling gaps serve as recommendations for further development of mathematical models. This includes expanding considered boundary conditions, adjustments of oversimplified assumptions, and emphasizing the need for further validation, that will stimulate the development of living wall technology towards a sustainable, energy efficient and reliable technology.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":\"208 \",\"pages\":\"Article 115009\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032124007354\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124007354","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Green (vegetative) building envelopes are widely recognized for their environmental benefits. They have a positive effect on the energy efficiency of buildings and improve the urban microclimate, e.g. by mitigating urban heat island effects and increasing living comfort in cities. Living walls are considered an emerging technology and thus lack widely implemented and established models of thermal response. Experimentally oriented studies of living walls currently prevail, while research on modeling is scarce. This study presents a detailed review of the modeling of heat and mass transfer, considering the individual mechanisms separately. The review demonstrates that existing models primarily adopt heat and mass transfer mechanisms from green roof models. However, the adjustments may be inadequate for dense urban environments due to the vertical layout of living walls. Most studies also assume the uniformity of properties, such as growing media moisture content throughout columns and rows of living wall modular elements, although these properties can vary and significantly affect the thermal response. It is also highlighted that the influence of an open-air gap on living wall thermal response (and modeling) might be underestimated. Identified modeling gaps serve as recommendations for further development of mathematical models. This includes expanding considered boundary conditions, adjustments of oversimplified assumptions, and emphasizing the need for further validation, that will stimulate the development of living wall technology towards a sustainable, energy efficient and reliable technology.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.