{"title":"用于生产替代燃料的可回收食品废弃物详细调查--现状与未来","authors":"Arivalagan Pugazhendhi , Ashutosh Sharma","doi":"10.1016/j.rser.2024.115005","DOIUrl":null,"url":null,"abstract":"<div><div>Food waste residues and discards from vegetables, fruits, bread, meat, and dairy products are often discarded in landfills as waste. However, these wasted food residues can be utilized to produce renewable, cost-effective, eco-friendly, and eliminate greenhouse gases. The conversion of biological food wastes into biofuels can also fulfil the existing demand for fossil fuels in transportation. Food discards are rich in fatty acids, lipids, and carbohydrates suitable for producing biodiesel, bioethanol, biomethane, biohydrogen, and biobutanol. There are some significant problems when it comes to using food waste for biofuels. Some of the considerations include maintaining the policies for the food wastes, methodologies employed for conversion, and availability of the raw material throughout the year. Although gasification of waste food products is widespread, the results are unsatisfactory. However, to find out a better way to use food discards for biofuel production, it is essential to find promising technologies. The present literature survey emphasizes the catalytic routes that have shown promising fuel outputs embedded techniques and methodologies, namely transesterification, cracking, and fermentation. We conclude that bioethanol and biodiesel production by enzymatic method is precise, and catalytic cracking is the promising better technique in prime aspects. This review provides details on the use of different food waste in producing biofuels, the economic impact of using food discards, and the futuristic plan for using food discard in beneficial, cost-effective, and eco-friendly ways.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A detailed survey of recyclable food discards for the production of alternative fuels – Present and future aspects\",\"authors\":\"Arivalagan Pugazhendhi , Ashutosh Sharma\",\"doi\":\"10.1016/j.rser.2024.115005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Food waste residues and discards from vegetables, fruits, bread, meat, and dairy products are often discarded in landfills as waste. However, these wasted food residues can be utilized to produce renewable, cost-effective, eco-friendly, and eliminate greenhouse gases. The conversion of biological food wastes into biofuels can also fulfil the existing demand for fossil fuels in transportation. Food discards are rich in fatty acids, lipids, and carbohydrates suitable for producing biodiesel, bioethanol, biomethane, biohydrogen, and biobutanol. There are some significant problems when it comes to using food waste for biofuels. Some of the considerations include maintaining the policies for the food wastes, methodologies employed for conversion, and availability of the raw material throughout the year. Although gasification of waste food products is widespread, the results are unsatisfactory. However, to find out a better way to use food discards for biofuel production, it is essential to find promising technologies. The present literature survey emphasizes the catalytic routes that have shown promising fuel outputs embedded techniques and methodologies, namely transesterification, cracking, and fermentation. We conclude that bioethanol and biodiesel production by enzymatic method is precise, and catalytic cracking is the promising better technique in prime aspects. This review provides details on the use of different food waste in producing biofuels, the economic impact of using food discards, and the futuristic plan for using food discard in beneficial, cost-effective, and eco-friendly ways.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032124007317\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124007317","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A detailed survey of recyclable food discards for the production of alternative fuels – Present and future aspects
Food waste residues and discards from vegetables, fruits, bread, meat, and dairy products are often discarded in landfills as waste. However, these wasted food residues can be utilized to produce renewable, cost-effective, eco-friendly, and eliminate greenhouse gases. The conversion of biological food wastes into biofuels can also fulfil the existing demand for fossil fuels in transportation. Food discards are rich in fatty acids, lipids, and carbohydrates suitable for producing biodiesel, bioethanol, biomethane, biohydrogen, and biobutanol. There are some significant problems when it comes to using food waste for biofuels. Some of the considerations include maintaining the policies for the food wastes, methodologies employed for conversion, and availability of the raw material throughout the year. Although gasification of waste food products is widespread, the results are unsatisfactory. However, to find out a better way to use food discards for biofuel production, it is essential to find promising technologies. The present literature survey emphasizes the catalytic routes that have shown promising fuel outputs embedded techniques and methodologies, namely transesterification, cracking, and fermentation. We conclude that bioethanol and biodiesel production by enzymatic method is precise, and catalytic cracking is the promising better technique in prime aspects. This review provides details on the use of different food waste in producing biofuels, the economic impact of using food discards, and the futuristic plan for using food discard in beneficial, cost-effective, and eco-friendly ways.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.