{"title":"提高吸收式冷却器的性能:纳米粒子添加综述","authors":"M. Venegas , M. de Vega , N. García-Hernando","doi":"10.1016/j.rser.2024.115008","DOIUrl":null,"url":null,"abstract":"<div><div>A review on the use of nanoparticles to improve the performance of absorption chillers is presented. The review includes a compilation and discussion of research data on the subject using as base fluids NH<sub>3</sub>-H<sub>2</sub>O, H<sub>2</sub>O-LiBr and other solutions. Topics analysed include: theoretical and experimental studies about mass transfer enhancement in absorbers and desorbers; research to improve performance of complete absorption chillers; evaluation of thermophysical properties and stability of nanofluids, including viscosity, surface tension, thermal conductivity and other properties; and other studies with results useful for implementation in absorption chillers. Trends about the use of nanofluids in absorption systems, type and concentration of nanoparticles that provide the best performances and specific topics that require more research are identified from the review. Strategies are proposed for future research or for decision makers related to absorption chillers.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance improvement of absorption chillers: A review on nanoparticle addition\",\"authors\":\"M. Venegas , M. de Vega , N. García-Hernando\",\"doi\":\"10.1016/j.rser.2024.115008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A review on the use of nanoparticles to improve the performance of absorption chillers is presented. The review includes a compilation and discussion of research data on the subject using as base fluids NH<sub>3</sub>-H<sub>2</sub>O, H<sub>2</sub>O-LiBr and other solutions. Topics analysed include: theoretical and experimental studies about mass transfer enhancement in absorbers and desorbers; research to improve performance of complete absorption chillers; evaluation of thermophysical properties and stability of nanofluids, including viscosity, surface tension, thermal conductivity and other properties; and other studies with results useful for implementation in absorption chillers. Trends about the use of nanofluids in absorption systems, type and concentration of nanoparticles that provide the best performances and specific topics that require more research are identified from the review. Strategies are proposed for future research or for decision makers related to absorption chillers.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032124007342\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124007342","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Performance improvement of absorption chillers: A review on nanoparticle addition
A review on the use of nanoparticles to improve the performance of absorption chillers is presented. The review includes a compilation and discussion of research data on the subject using as base fluids NH3-H2O, H2O-LiBr and other solutions. Topics analysed include: theoretical and experimental studies about mass transfer enhancement in absorbers and desorbers; research to improve performance of complete absorption chillers; evaluation of thermophysical properties and stability of nanofluids, including viscosity, surface tension, thermal conductivity and other properties; and other studies with results useful for implementation in absorption chillers. Trends about the use of nanofluids in absorption systems, type and concentration of nanoparticles that provide the best performances and specific topics that require more research are identified from the review. Strategies are proposed for future research or for decision makers related to absorption chillers.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.