Zihan Xu , Zhaohuan Mai , Yanhui Wu , Xinwu Li , Xinyu Zeng , Chunchun Meng , Guangming Li , Haochen Zhu
{"title":"关于 g-C3N4 功能化纳滤膜排斥混合盐溶液的研究","authors":"Zihan Xu , Zhaohuan Mai , Yanhui Wu , Xinwu Li , Xinyu Zeng , Chunchun Meng , Guangming Li , Haochen Zhu","doi":"10.1016/j.desal.2024.118226","DOIUrl":null,"url":null,"abstract":"<div><div>The use of nanofiltration membrane technologies for seawater desalination is one of the effective ways to solve the shortage of water resources. However, traditional commercial membrane cannot maintain the excellent rejection for a variety of salt ions in mixed salt solutions, while ensuring the excellent permeance flux. In this study, g-C<sub>3</sub>N<sub>4</sub> functionalized nanofiltration membranes of special charge distribution on the surface were prepared by interfacial polymerization to investigate the rejection performance of mixed salt solution (Na<sub>2</sub>SO<sub>4</sub>/NaCl, CaCl<sub>2</sub>/NaCl). Compared with the traditional commercial nanofiltration membrane, the polyamide nanofiltration membrane intercalated with g-C<sub>3</sub>N<sub>4</sub> has excellent rejection performance of a permeance flux of 50.76 L<span><math><mo>∙</mo></math></span>m<sup>−2</sup> h<sup>−1</sup> and 50% retention improvement for both monovalent and divalent ions. In addition, the composite membrane has a good anti-fouling performance in both bovine serum albumin and humic acid solutions.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118226"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the rejection of mixed salt solution by g-C3N4 functionalized nanofiltration membrane\",\"authors\":\"Zihan Xu , Zhaohuan Mai , Yanhui Wu , Xinwu Li , Xinyu Zeng , Chunchun Meng , Guangming Li , Haochen Zhu\",\"doi\":\"10.1016/j.desal.2024.118226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of nanofiltration membrane technologies for seawater desalination is one of the effective ways to solve the shortage of water resources. However, traditional commercial membrane cannot maintain the excellent rejection for a variety of salt ions in mixed salt solutions, while ensuring the excellent permeance flux. In this study, g-C<sub>3</sub>N<sub>4</sub> functionalized nanofiltration membranes of special charge distribution on the surface were prepared by interfacial polymerization to investigate the rejection performance of mixed salt solution (Na<sub>2</sub>SO<sub>4</sub>/NaCl, CaCl<sub>2</sub>/NaCl). Compared with the traditional commercial nanofiltration membrane, the polyamide nanofiltration membrane intercalated with g-C<sub>3</sub>N<sub>4</sub> has excellent rejection performance of a permeance flux of 50.76 L<span><math><mo>∙</mo></math></span>m<sup>−2</sup> h<sup>−1</sup> and 50% retention improvement for both monovalent and divalent ions. In addition, the composite membrane has a good anti-fouling performance in both bovine serum albumin and humic acid solutions.</div></div>\",\"PeriodicalId\":299,\"journal\":{\"name\":\"Desalination\",\"volume\":\"593 \",\"pages\":\"Article 118226\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Desalination\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011916424009378\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009378","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Investigation on the rejection of mixed salt solution by g-C3N4 functionalized nanofiltration membrane
The use of nanofiltration membrane technologies for seawater desalination is one of the effective ways to solve the shortage of water resources. However, traditional commercial membrane cannot maintain the excellent rejection for a variety of salt ions in mixed salt solutions, while ensuring the excellent permeance flux. In this study, g-C3N4 functionalized nanofiltration membranes of special charge distribution on the surface were prepared by interfacial polymerization to investigate the rejection performance of mixed salt solution (Na2SO4/NaCl, CaCl2/NaCl). Compared with the traditional commercial nanofiltration membrane, the polyamide nanofiltration membrane intercalated with g-C3N4 has excellent rejection performance of a permeance flux of 50.76 Lm−2 h−1 and 50% retention improvement for both monovalent and divalent ions. In addition, the composite membrane has a good anti-fouling performance in both bovine serum albumin and humic acid solutions.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.