Fan Cheng , Gexiao Sun , Xuehong Li , Thomas D. Warkentin , Yongfeng Ai
{"title":"改变豌豆淀粉功能和降低血糖反应的新型水热改性技术","authors":"Fan Cheng , Gexiao Sun , Xuehong Li , Thomas D. Warkentin , Yongfeng Ai","doi":"10.1016/j.carbpol.2024.122861","DOIUrl":null,"url":null,"abstract":"<div><div>Despite being an effective and clean-label method, heat-moisture treatment (HMT) is not commonly used for starch modification in industry due to the difficulty of scale-up. This study aimed to develop a novel method of using extrusion combined with high-temperature drying (EHTD) as an alternative to HMT for starch modification. Pea starch was subjected to extrusion at 37.5 % moisture level and with a low-temperature profile (≤ 65 °C), followed by immediate heating at 130 °C for 1 h. EHTD significantly damaged the granules, altered the X-ray diffraction pattern, and reduced the relative crystallinity of pea starch. Overall, EHTD-modified pea starch exhibited increased gelatinization temperatures and decreased gelatinization enthalpy change, lowered pasting viscosity and gel hardness, as well as enhanced enzymatic resistance than the native pea starch. More importantly, in a human feeding trial (n = 20 healthy participants) to monitor plasma glucose response over a period of 2 h after consuming water-boiled sample (35 g starch, dry basis), EHTD-modified pea starch exhibited 22 % reduction (<em>p</em> < 0.01) in plasma glucose incremental area under the curve as compared to the native counterpart. The results indicated that EHTD could be a new simple and clean-label method to produce functional and low-glycemic starch ingredients.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122861"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel hydrothermal modification to alter functionality and reduce glycemic response of pea starch\",\"authors\":\"Fan Cheng , Gexiao Sun , Xuehong Li , Thomas D. Warkentin , Yongfeng Ai\",\"doi\":\"10.1016/j.carbpol.2024.122861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite being an effective and clean-label method, heat-moisture treatment (HMT) is not commonly used for starch modification in industry due to the difficulty of scale-up. This study aimed to develop a novel method of using extrusion combined with high-temperature drying (EHTD) as an alternative to HMT for starch modification. Pea starch was subjected to extrusion at 37.5 % moisture level and with a low-temperature profile (≤ 65 °C), followed by immediate heating at 130 °C for 1 h. EHTD significantly damaged the granules, altered the X-ray diffraction pattern, and reduced the relative crystallinity of pea starch. Overall, EHTD-modified pea starch exhibited increased gelatinization temperatures and decreased gelatinization enthalpy change, lowered pasting viscosity and gel hardness, as well as enhanced enzymatic resistance than the native pea starch. More importantly, in a human feeding trial (n = 20 healthy participants) to monitor plasma glucose response over a period of 2 h after consuming water-boiled sample (35 g starch, dry basis), EHTD-modified pea starch exhibited 22 % reduction (<em>p</em> < 0.01) in plasma glucose incremental area under the curve as compared to the native counterpart. The results indicated that EHTD could be a new simple and clean-label method to produce functional and low-glycemic starch ingredients.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"348 \",\"pages\":\"Article 122861\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861724010877\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724010877","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Novel hydrothermal modification to alter functionality and reduce glycemic response of pea starch
Despite being an effective and clean-label method, heat-moisture treatment (HMT) is not commonly used for starch modification in industry due to the difficulty of scale-up. This study aimed to develop a novel method of using extrusion combined with high-temperature drying (EHTD) as an alternative to HMT for starch modification. Pea starch was subjected to extrusion at 37.5 % moisture level and with a low-temperature profile (≤ 65 °C), followed by immediate heating at 130 °C for 1 h. EHTD significantly damaged the granules, altered the X-ray diffraction pattern, and reduced the relative crystallinity of pea starch. Overall, EHTD-modified pea starch exhibited increased gelatinization temperatures and decreased gelatinization enthalpy change, lowered pasting viscosity and gel hardness, as well as enhanced enzymatic resistance than the native pea starch. More importantly, in a human feeding trial (n = 20 healthy participants) to monitor plasma glucose response over a period of 2 h after consuming water-boiled sample (35 g starch, dry basis), EHTD-modified pea starch exhibited 22 % reduction (p < 0.01) in plasma glucose incremental area under the curve as compared to the native counterpart. The results indicated that EHTD could be a new simple and clean-label method to produce functional and low-glycemic starch ingredients.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.