{"title":"通过水胶体多糖的假塑性保留饮料中的三维液体形态","authors":"Ippei Inoue , Itsuo Hanasaki , Daichi Suetsugu , Takahiro Kudo","doi":"10.1016/j.foodhyd.2024.110767","DOIUrl":null,"url":null,"abstract":"<div><div>Creation of well-retained 3D fluidic patterns in the beverage was demonstrated using pseudoplastic fluids. The retainability of the obtained patterns depends on the pseudoplasticity of the base beverage as a canvas solution, rather than the viscosity itself. A small amount of xanthan gum added to the canvas solution imparted high pseudoplasticity, resulting in improved retainability of the 3D fluidic patterns. On the other hand, the higher viscosity while keeping Newtonian behavior by addition of e.g., carboxymethyl cellulose led to less effect of the retainability, more susceptible to convective perturbation by drawing motion. Thus, making use of pseudoplasticity rather than simply resorting to viscosity satisfies both visual design and drinking experience. This liquid drawing technology in beverage is based on the rational design of rheological characteristics, enabling the diverse 3D designs in a cup of beverage.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"160 ","pages":"Article 110767"},"PeriodicalIF":11.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D liquid pattern in beverage retained by pseudoplasticity of hydrocolloid polysaccharides\",\"authors\":\"Ippei Inoue , Itsuo Hanasaki , Daichi Suetsugu , Takahiro Kudo\",\"doi\":\"10.1016/j.foodhyd.2024.110767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Creation of well-retained 3D fluidic patterns in the beverage was demonstrated using pseudoplastic fluids. The retainability of the obtained patterns depends on the pseudoplasticity of the base beverage as a canvas solution, rather than the viscosity itself. A small amount of xanthan gum added to the canvas solution imparted high pseudoplasticity, resulting in improved retainability of the 3D fluidic patterns. On the other hand, the higher viscosity while keeping Newtonian behavior by addition of e.g., carboxymethyl cellulose led to less effect of the retainability, more susceptible to convective perturbation by drawing motion. Thus, making use of pseudoplasticity rather than simply resorting to viscosity satisfies both visual design and drinking experience. This liquid drawing technology in beverage is based on the rational design of rheological characteristics, enabling the diverse 3D designs in a cup of beverage.</div></div>\",\"PeriodicalId\":320,\"journal\":{\"name\":\"Food Hydrocolloids\",\"volume\":\"160 \",\"pages\":\"Article 110767\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268005X24010415\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24010415","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
3D liquid pattern in beverage retained by pseudoplasticity of hydrocolloid polysaccharides
Creation of well-retained 3D fluidic patterns in the beverage was demonstrated using pseudoplastic fluids. The retainability of the obtained patterns depends on the pseudoplasticity of the base beverage as a canvas solution, rather than the viscosity itself. A small amount of xanthan gum added to the canvas solution imparted high pseudoplasticity, resulting in improved retainability of the 3D fluidic patterns. On the other hand, the higher viscosity while keeping Newtonian behavior by addition of e.g., carboxymethyl cellulose led to less effect of the retainability, more susceptible to convective perturbation by drawing motion. Thus, making use of pseudoplasticity rather than simply resorting to viscosity satisfies both visual design and drinking experience. This liquid drawing technology in beverage is based on the rational design of rheological characteristics, enabling the diverse 3D designs in a cup of beverage.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.