{"title":"奥森问题的局部投影稳定 HHO 方法","authors":"Gouranga Mallik , Rahul Biswas , Thirupathi Gudi","doi":"10.1016/j.camwa.2024.10.030","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we consider a local projection stabilisation for a Hybrid High-Order (HHO) approximation of the Oseen problem. We prove an existence-uniqueness result under a stronger SUPG-like norm. We improve the stability and provide error estimation in stronger norm for convection dominated Oseen problem. We also derive an optimal order error estimate under the SUPG-like norm for equal-order polynomial discretisation of velocity and pressure spaces. Numerical experiments are performed to validate the theoretical results.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"176 ","pages":"Pages 202-220"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A local projection stabilised HHO method for the Oseen problem\",\"authors\":\"Gouranga Mallik , Rahul Biswas , Thirupathi Gudi\",\"doi\":\"10.1016/j.camwa.2024.10.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we consider a local projection stabilisation for a Hybrid High-Order (HHO) approximation of the Oseen problem. We prove an existence-uniqueness result under a stronger SUPG-like norm. We improve the stability and provide error estimation in stronger norm for convection dominated Oseen problem. We also derive an optimal order error estimate under the SUPG-like norm for equal-order polynomial discretisation of velocity and pressure spaces. Numerical experiments are performed to validate the theoretical results.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"176 \",\"pages\":\"Pages 202-220\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124004735\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004735","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A local projection stabilised HHO method for the Oseen problem
In this article, we consider a local projection stabilisation for a Hybrid High-Order (HHO) approximation of the Oseen problem. We prove an existence-uniqueness result under a stronger SUPG-like norm. We improve the stability and provide error estimation in stronger norm for convection dominated Oseen problem. We also derive an optimal order error estimate under the SUPG-like norm for equal-order polynomial discretisation of velocity and pressure spaces. Numerical experiments are performed to validate the theoretical results.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).