轻微次临界新曼问题内部峰值解的渐近行为

Q1 Mathematics
Fatimetou Mohamed Salem
{"title":"轻微次临界新曼问题内部峰值解的渐近行为","authors":"Fatimetou Mohamed Salem","doi":"10.1016/j.padiff.2024.100920","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the asymptotic behavior of solutions of the Neumann problem <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>)</mo></mrow></math></span>: <span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mi>ɛ</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mi>u</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> in <span><math><mi>Ω</mi></math></span>, <span><math><mrow><mi>∂</mi><mi>u</mi><mo>/</mo><mi>∂</mi><mi>ν</mi><mo>=</mo><mn>0</mn></mrow></math></span> on <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>, where <span><math><mi>Ω</mi></math></span> is a smooth bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>6</mn></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>2</mn><mi>n</mi><mo>/</mo><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> is the critical Sobolev exponent, <span><math><mi>ɛ</mi></math></span> is a small positive real and <span><math><mi>V</mi></math></span> is a smooth positive function defined on <span><math><mover><mrow><mi>Ω</mi></mrow><mo>¯</mo></mover></math></span>. We give a precise location of interior blow up points and blow up rates when the number of concentration points is less than or equal to 2. The proof strategy is based on a refined blow up analysis in the neighborhood of bubbles.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100920"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior of interior peaked solutions for a slightly subcritical Neumann problem\",\"authors\":\"Fatimetou Mohamed Salem\",\"doi\":\"10.1016/j.padiff.2024.100920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the asymptotic behavior of solutions of the Neumann problem <span><math><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>ɛ</mi></mrow></msub><mo>)</mo></mrow></math></span>: <span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi><mo>−</mo><mi>ɛ</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mi>u</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> in <span><math><mi>Ω</mi></math></span>, <span><math><mrow><mi>∂</mi><mi>u</mi><mo>/</mo><mi>∂</mi><mi>ν</mi><mo>=</mo><mn>0</mn></mrow></math></span> on <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>, where <span><math><mi>Ω</mi></math></span> is a smooth bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>6</mn></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>2</mn><mi>n</mi><mo>/</mo><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> is the critical Sobolev exponent, <span><math><mi>ɛ</mi></math></span> is a small positive real and <span><math><mi>V</mi></math></span> is a smooth positive function defined on <span><math><mover><mrow><mi>Ω</mi></mrow><mo>¯</mo></mover></math></span>. We give a precise location of interior blow up points and blow up rates when the number of concentration points is less than or equal to 2. The proof strategy is based on a refined blow up analysis in the neighborhood of bubbles.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100920\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究 Neumann 问题 (Pɛ) 解的渐近行为:-Δu+V(x)u=up-ɛ, u>0 in Ω, ∂u/∂ν=0 on ∂Ω,其中 Ω 是 Rn 中的光滑有界域,n≥6,p+1=2n/(n-2) 是临界 Sobolev 指数,ɛ 是小正实数,V 是定义在 Ω¯ 上的光滑正函数。我们给出了当集中点个数小于或等于 2 时内部炸裂点的精确位置和炸裂率,证明策略基于气泡邻域的精细炸裂分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic behavior of interior peaked solutions for a slightly subcritical Neumann problem
In this paper, we study the asymptotic behavior of solutions of the Neumann problem (Pɛ): Δu+V(x)u=upɛ, u>0 in Ω, u/ν=0 on Ω, where Ω is a smooth bounded domain in Rn, n6, p+1=2n/(n2) is the critical Sobolev exponent, ɛ is a small positive real and V is a smooth positive function defined on Ω¯. We give a precise location of interior blow up points and blow up rates when the number of concentration points is less than or equal to 2. The proof strategy is based on a refined blow up analysis in the neighborhood of bubbles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信