某些欧拉型抽象考奇问题的张量积解

Q1 Mathematics
Sharifa Al-Sharif , Batool Momani , Jamila Jawdat
{"title":"某些欧拉型抽象考奇问题的张量积解","authors":"Sharifa Al-Sharif ,&nbsp;Batool Momani ,&nbsp;Jamila Jawdat","doi":"10.1016/j.padiff.2024.100957","DOIUrl":null,"url":null,"abstract":"<div><div>Our concern in this paper, is to find exact solutions, using tensor product techniques, of two types of second order homogeneous Abstract Cauchy problems of the following forms <span><span><span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>C</mi><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>F</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo></mrow></math></span></span></span> and <span><span><span><math><mrow><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mi>t</mi><mi>C</mi><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>F</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>.</mo></mrow></math></span></span></span> The initial conditions to be used are <span><span><span><math><mrow><mi>u</mi><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>C</mi></math></span> and <span><math><mi>F</mi></math></span> are closed linear operators that are densely defined on a Banach space <span><math><mi>Y</mi></math></span>, <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><msubsup><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>∈</mo><mi>Y</mi></mrow></math></span> and <span><math><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>I</mi><mo>,</mo><mi>Y</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span></div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100957"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensor product solutions of certain Abstract Cauchy problems of Euler type\",\"authors\":\"Sharifa Al-Sharif ,&nbsp;Batool Momani ,&nbsp;Jamila Jawdat\",\"doi\":\"10.1016/j.padiff.2024.100957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Our concern in this paper, is to find exact solutions, using tensor product techniques, of two types of second order homogeneous Abstract Cauchy problems of the following forms <span><span><span><math><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>C</mi><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>F</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo></mrow></math></span></span></span> and <span><span><span><math><mrow><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mi>t</mi><mi>C</mi><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>F</mi><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>.</mo></mrow></math></span></span></span> The initial conditions to be used are <span><span><span><math><mrow><mi>u</mi><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>C</mi></math></span> and <span><math><mi>F</mi></math></span> are closed linear operators that are densely defined on a Banach space <span><math><mi>Y</mi></math></span>, <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><msubsup><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>∈</mo><mi>Y</mi></mrow></math></span> and <span><math><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>I</mi><mo>,</mo><mi>Y</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span></div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100957\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文关注的是利用张量乘积技术找到以下两种形式的二阶均质抽象考基问题的精确解:u″(t)+Cu′(t)+Fu(t)=0 和 t2u′′(t)+2tCu′(t)+Fu(t)=0。使用的初始条件为 u(t0)=u0,u′(t0)=u0′,其中 C 和 F 是密定义在巴纳赫空间 Y 上的封闭线性算子,u0,u0′∈Y 和 u∈C2(I,Y)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensor product solutions of certain Abstract Cauchy problems of Euler type
Our concern in this paper, is to find exact solutions, using tensor product techniques, of two types of second order homogeneous Abstract Cauchy problems of the following forms u(t)+Cu(t)+Fu(t)=0, and t2u(t)+2tCu(t)+Fu(t)=0. The initial conditions to be used are u(t0)=u0,u(t0)=u0, where C and F are closed linear operators that are densely defined on a Banach space Y, u0,u0Y and uC2(I,Y).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信