{"title":"SIS 流行病模型中的最佳固化率分配","authors":"Ryan McFadden, Fraser Daly, Seva Shneer","doi":"10.1016/j.spl.2024.110284","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a susceptible-infected-susceptible (SIS) epidemic model on an undirected graph, with a homogeneous infection rate and heterogeneous curing rates. We set an overall network curing rate, <span><math><mi>Δ</mi></math></span>, and study optimal allocation of curing rates to nodes, in terms of the expected time to the extinction of the epidemic. As other parameters are fixed, we study these allocations as the infection rate tends to 0 and <span><math><mi>∞</mi></math></span> in both regular and non-regular graphs. We further illustrate this optimisation with some numerical examples. Our findings demonstrate that, while the uniform split of <span><math><mi>Δ</mi></math></span> is optimal in some situations, it is typically not optimal, even for regular graphs.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"216 ","pages":"Article 110284"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal curing rate allocation in the SIS epidemic model\",\"authors\":\"Ryan McFadden, Fraser Daly, Seva Shneer\",\"doi\":\"10.1016/j.spl.2024.110284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a susceptible-infected-susceptible (SIS) epidemic model on an undirected graph, with a homogeneous infection rate and heterogeneous curing rates. We set an overall network curing rate, <span><math><mi>Δ</mi></math></span>, and study optimal allocation of curing rates to nodes, in terms of the expected time to the extinction of the epidemic. As other parameters are fixed, we study these allocations as the infection rate tends to 0 and <span><math><mi>∞</mi></math></span> in both regular and non-regular graphs. We further illustrate this optimisation with some numerical examples. Our findings demonstrate that, while the uniform split of <span><math><mi>Δ</mi></math></span> is optimal in some situations, it is typically not optimal, even for regular graphs.</div></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"216 \",\"pages\":\"Article 110284\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002530\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002530","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Optimal curing rate allocation in the SIS epidemic model
We consider a susceptible-infected-susceptible (SIS) epidemic model on an undirected graph, with a homogeneous infection rate and heterogeneous curing rates. We set an overall network curing rate, , and study optimal allocation of curing rates to nodes, in terms of the expected time to the extinction of the epidemic. As other parameters are fixed, we study these allocations as the infection rate tends to 0 and in both regular and non-regular graphs. We further illustrate this optimisation with some numerical examples. Our findings demonstrate that, while the uniform split of is optimal in some situations, it is typically not optimal, even for regular graphs.
期刊介绍:
Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature.
Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission.
The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability.
The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.