SIS 流行病模型中的最佳固化率分配

Pub Date : 2024-10-15 DOI:10.1016/j.spl.2024.110284
Ryan McFadden, Fraser Daly, Seva Shneer
{"title":"SIS 流行病模型中的最佳固化率分配","authors":"Ryan McFadden,&nbsp;Fraser Daly,&nbsp;Seva Shneer","doi":"10.1016/j.spl.2024.110284","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a susceptible-infected-susceptible (SIS) epidemic model on an undirected graph, with a homogeneous infection rate and heterogeneous curing rates. We set an overall network curing rate, <span><math><mi>Δ</mi></math></span>, and study optimal allocation of curing rates to nodes, in terms of the expected time to the extinction of the epidemic. As other parameters are fixed, we study these allocations as the infection rate tends to 0 and <span><math><mi>∞</mi></math></span> in both regular and non-regular graphs. We further illustrate this optimisation with some numerical examples. Our findings demonstrate that, while the uniform split of <span><math><mi>Δ</mi></math></span> is optimal in some situations, it is typically not optimal, even for regular graphs.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal curing rate allocation in the SIS epidemic model\",\"authors\":\"Ryan McFadden,&nbsp;Fraser Daly,&nbsp;Seva Shneer\",\"doi\":\"10.1016/j.spl.2024.110284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a susceptible-infected-susceptible (SIS) epidemic model on an undirected graph, with a homogeneous infection rate and heterogeneous curing rates. We set an overall network curing rate, <span><math><mi>Δ</mi></math></span>, and study optimal allocation of curing rates to nodes, in terms of the expected time to the extinction of the epidemic. As other parameters are fixed, we study these allocations as the infection rate tends to 0 and <span><math><mi>∞</mi></math></span> in both regular and non-regular graphs. We further illustrate this optimisation with some numerical examples. Our findings demonstrate that, while the uniform split of <span><math><mi>Δ</mi></math></span> is optimal in some situations, it is typically not optimal, even for regular graphs.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了无向图上的易感-感染-易感(SIS)流行病模型,该模型具有同质感染率和异质治愈率。我们设定了一个整体网络固化率 Δ,并从疫情消亡的预期时间角度研究了各节点固化率的最优分配。由于其他参数是固定的,我们将在规则图和非规则图中研究感染率趋于 0 和 ∞ 时的分配情况。我们通过一些数值示例进一步说明了这种优化方法。我们的研究结果表明,虽然在某些情况下Δ的统一分割是最优的,但它通常不是最优的,即使对于规则图也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Optimal curing rate allocation in the SIS epidemic model
We consider a susceptible-infected-susceptible (SIS) epidemic model on an undirected graph, with a homogeneous infection rate and heterogeneous curing rates. We set an overall network curing rate, Δ, and study optimal allocation of curing rates to nodes, in terms of the expected time to the extinction of the epidemic. As other parameters are fixed, we study these allocations as the infection rate tends to 0 and in both regular and non-regular graphs. We further illustrate this optimisation with some numerical examples. Our findings demonstrate that, while the uniform split of Δ is optimal in some situations, it is typically not optimal, even for regular graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信