基于低频观测的 Ornstein-Uhlenbeck 过程的统计推断

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Dingwen Zhang
{"title":"基于低频观测的 Ornstein-Uhlenbeck 过程的统计推断","authors":"Dingwen Zhang","doi":"10.1016/j.spl.2024.110286","DOIUrl":null,"url":null,"abstract":"<div><div>Low-frequency observations are a common occurrence in real-world applications, making statistical inference for stochastic processes driven by stochastic differential equations (SDEs) based on such observations an important issue. In this paper, we investigate the statistical inference for the Ornstein–Uhlenbeck (OU) process using low-frequency observations. We propose modified least squares estimators (MLSEs) for the drift parameters and a modified quadratic variation estimator for the diffusion parameter based on the solution of the OU process. The MLSEs are derived heuristically using the nonlinear least squares method, despite the OU process satisfying a linear SDE. Unlike previous approaches, these modified estimators are asymptotically unbiased. Leveraging the ergodic properties of the OU process, we also propose ergodic estimators for the three parameters. The asymptotic behavior of these estimators is established using the ergodic properties and central limit theorem for the OU process, achieved through linear model techniques and multivariate Markov chain central limit theorem. Monte Carlo simulation results are presented to illustrate and support our theoretical findings.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"216 ","pages":"Article 110286"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical inference for Ornstein–Uhlenbeck processes based on low-frequency observations\",\"authors\":\"Dingwen Zhang\",\"doi\":\"10.1016/j.spl.2024.110286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low-frequency observations are a common occurrence in real-world applications, making statistical inference for stochastic processes driven by stochastic differential equations (SDEs) based on such observations an important issue. In this paper, we investigate the statistical inference for the Ornstein–Uhlenbeck (OU) process using low-frequency observations. We propose modified least squares estimators (MLSEs) for the drift parameters and a modified quadratic variation estimator for the diffusion parameter based on the solution of the OU process. The MLSEs are derived heuristically using the nonlinear least squares method, despite the OU process satisfying a linear SDE. Unlike previous approaches, these modified estimators are asymptotically unbiased. Leveraging the ergodic properties of the OU process, we also propose ergodic estimators for the three parameters. The asymptotic behavior of these estimators is established using the ergodic properties and central limit theorem for the OU process, achieved through linear model techniques and multivariate Markov chain central limit theorem. Monte Carlo simulation results are presented to illustrate and support our theoretical findings.</div></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"216 \",\"pages\":\"Article 110286\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002554\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002554","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

低频观测是现实世界应用中的常见现象,因此基于低频观测对由随机微分方程(SDE)驱动的随机过程进行统计推断是一个重要问题。本文研究了利用低频观测数据对奥恩斯坦-乌伦贝克(OU)过程进行统计推断的问题。我们根据 OU 过程的解,提出了漂移参数的修正最小二乘估计器(MLSE)和扩散参数的修正二次变化估计器。尽管 OU 过程满足线性 SDE,但 MLSE 是通过非线性最小二乘法启发式得出的。与以前的方法不同,这些修正估计器在渐近上是无偏的。利用 OU 过程的遍历特性,我们还提出了三个参数的遍历估计值。通过线性模型技术和多变量马尔可夫链中心极限定理,我们利用 OU 过程的遍历特性和中心极限定理确定了这些估计器的渐近行为。蒙特卡罗模拟结果用于说明和支持我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical inference for Ornstein–Uhlenbeck processes based on low-frequency observations
Low-frequency observations are a common occurrence in real-world applications, making statistical inference for stochastic processes driven by stochastic differential equations (SDEs) based on such observations an important issue. In this paper, we investigate the statistical inference for the Ornstein–Uhlenbeck (OU) process using low-frequency observations. We propose modified least squares estimators (MLSEs) for the drift parameters and a modified quadratic variation estimator for the diffusion parameter based on the solution of the OU process. The MLSEs are derived heuristically using the nonlinear least squares method, despite the OU process satisfying a linear SDE. Unlike previous approaches, these modified estimators are asymptotically unbiased. Leveraging the ergodic properties of the OU process, we also propose ergodic estimators for the three parameters. The asymptotic behavior of these estimators is established using the ergodic properties and central limit theorem for the OU process, achieved through linear model techniques and multivariate Markov chain central limit theorem. Monte Carlo simulation results are presented to illustrate and support our theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Probability Letters
Statistics & Probability Letters 数学-统计学与概率论
CiteScore
1.60
自引率
0.00%
发文量
173
审稿时长
6 months
期刊介绍: Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature. Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission. The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability. The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信