{"title":"基于低频观测的 Ornstein-Uhlenbeck 过程的统计推断","authors":"Dingwen Zhang","doi":"10.1016/j.spl.2024.110286","DOIUrl":null,"url":null,"abstract":"<div><div>Low-frequency observations are a common occurrence in real-world applications, making statistical inference for stochastic processes driven by stochastic differential equations (SDEs) based on such observations an important issue. In this paper, we investigate the statistical inference for the Ornstein–Uhlenbeck (OU) process using low-frequency observations. We propose modified least squares estimators (MLSEs) for the drift parameters and a modified quadratic variation estimator for the diffusion parameter based on the solution of the OU process. The MLSEs are derived heuristically using the nonlinear least squares method, despite the OU process satisfying a linear SDE. Unlike previous approaches, these modified estimators are asymptotically unbiased. Leveraging the ergodic properties of the OU process, we also propose ergodic estimators for the three parameters. The asymptotic behavior of these estimators is established using the ergodic properties and central limit theorem for the OU process, achieved through linear model techniques and multivariate Markov chain central limit theorem. Monte Carlo simulation results are presented to illustrate and support our theoretical findings.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"216 ","pages":"Article 110286"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical inference for Ornstein–Uhlenbeck processes based on low-frequency observations\",\"authors\":\"Dingwen Zhang\",\"doi\":\"10.1016/j.spl.2024.110286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low-frequency observations are a common occurrence in real-world applications, making statistical inference for stochastic processes driven by stochastic differential equations (SDEs) based on such observations an important issue. In this paper, we investigate the statistical inference for the Ornstein–Uhlenbeck (OU) process using low-frequency observations. We propose modified least squares estimators (MLSEs) for the drift parameters and a modified quadratic variation estimator for the diffusion parameter based on the solution of the OU process. The MLSEs are derived heuristically using the nonlinear least squares method, despite the OU process satisfying a linear SDE. Unlike previous approaches, these modified estimators are asymptotically unbiased. Leveraging the ergodic properties of the OU process, we also propose ergodic estimators for the three parameters. The asymptotic behavior of these estimators is established using the ergodic properties and central limit theorem for the OU process, achieved through linear model techniques and multivariate Markov chain central limit theorem. Monte Carlo simulation results are presented to illustrate and support our theoretical findings.</div></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"216 \",\"pages\":\"Article 110286\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002554\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002554","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
低频观测是现实世界应用中的常见现象,因此基于低频观测对由随机微分方程(SDE)驱动的随机过程进行统计推断是一个重要问题。本文研究了利用低频观测数据对奥恩斯坦-乌伦贝克(OU)过程进行统计推断的问题。我们根据 OU 过程的解,提出了漂移参数的修正最小二乘估计器(MLSE)和扩散参数的修正二次变化估计器。尽管 OU 过程满足线性 SDE,但 MLSE 是通过非线性最小二乘法启发式得出的。与以前的方法不同,这些修正估计器在渐近上是无偏的。利用 OU 过程的遍历特性,我们还提出了三个参数的遍历估计值。通过线性模型技术和多变量马尔可夫链中心极限定理,我们利用 OU 过程的遍历特性和中心极限定理确定了这些估计器的渐近行为。蒙特卡罗模拟结果用于说明和支持我们的理论发现。
Statistical inference for Ornstein–Uhlenbeck processes based on low-frequency observations
Low-frequency observations are a common occurrence in real-world applications, making statistical inference for stochastic processes driven by stochastic differential equations (SDEs) based on such observations an important issue. In this paper, we investigate the statistical inference for the Ornstein–Uhlenbeck (OU) process using low-frequency observations. We propose modified least squares estimators (MLSEs) for the drift parameters and a modified quadratic variation estimator for the diffusion parameter based on the solution of the OU process. The MLSEs are derived heuristically using the nonlinear least squares method, despite the OU process satisfying a linear SDE. Unlike previous approaches, these modified estimators are asymptotically unbiased. Leveraging the ergodic properties of the OU process, we also propose ergodic estimators for the three parameters. The asymptotic behavior of these estimators is established using the ergodic properties and central limit theorem for the OU process, achieved through linear model techniques and multivariate Markov chain central limit theorem. Monte Carlo simulation results are presented to illustrate and support our theoretical findings.
期刊介绍:
Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature.
Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission.
The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability.
The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.