{"title":"利用机器学习技术预测比特币波动性","authors":"Zih-Chun Huang , Ivan Sangiorgi , Andrew Urquhart","doi":"10.1016/j.intfin.2024.102064","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the Bitcoin volatility forecasting performance between popular traditional econometric models and machine learning techniques. We compare the 1-day to 2-month ahead forecasting performance of the Long Short-Term Memory (LSTM) and a hybrid Convolutional Neural Network-LSTM (CNN-LSTM) model to the traditional models. We find that neural networks outperform Generalised Autoregressive Conditional Heteroskedasticity (GARCH) models for all forecasting horizons. Furthermore, the LSTM model outperforms the Heterogeneous Autoregressive (HAR) model and by integrating the Markov Transition Field (MTF) into the CNN-LSTM model, we achieve superior forecasting results in the short-term, particularly for the 7-day forecasts.</div></div>","PeriodicalId":48119,"journal":{"name":"Journal of International Financial Markets Institutions & Money","volume":"97 ","pages":"Article 102064"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting Bitcoin volatility using machine learning techniques\",\"authors\":\"Zih-Chun Huang , Ivan Sangiorgi , Andrew Urquhart\",\"doi\":\"10.1016/j.intfin.2024.102064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the Bitcoin volatility forecasting performance between popular traditional econometric models and machine learning techniques. We compare the 1-day to 2-month ahead forecasting performance of the Long Short-Term Memory (LSTM) and a hybrid Convolutional Neural Network-LSTM (CNN-LSTM) model to the traditional models. We find that neural networks outperform Generalised Autoregressive Conditional Heteroskedasticity (GARCH) models for all forecasting horizons. Furthermore, the LSTM model outperforms the Heterogeneous Autoregressive (HAR) model and by integrating the Markov Transition Field (MTF) into the CNN-LSTM model, we achieve superior forecasting results in the short-term, particularly for the 7-day forecasts.</div></div>\",\"PeriodicalId\":48119,\"journal\":{\"name\":\"Journal of International Financial Markets Institutions & Money\",\"volume\":\"97 \",\"pages\":\"Article 102064\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of International Financial Markets Institutions & Money\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1042443124001306\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of International Financial Markets Institutions & Money","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1042443124001306","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Forecasting Bitcoin volatility using machine learning techniques
This paper studies the Bitcoin volatility forecasting performance between popular traditional econometric models and machine learning techniques. We compare the 1-day to 2-month ahead forecasting performance of the Long Short-Term Memory (LSTM) and a hybrid Convolutional Neural Network-LSTM (CNN-LSTM) model to the traditional models. We find that neural networks outperform Generalised Autoregressive Conditional Heteroskedasticity (GARCH) models for all forecasting horizons. Furthermore, the LSTM model outperforms the Heterogeneous Autoregressive (HAR) model and by integrating the Markov Transition Field (MTF) into the CNN-LSTM model, we achieve superior forecasting results in the short-term, particularly for the 7-day forecasts.
期刊介绍:
International trade, financing and investments, and the related cash and credit transactions, have grown at an extremely rapid pace in recent years. The international monetary system has continued to evolve to accommodate the need for foreign-currency denominated transactions and in the process has provided opportunities for its ongoing observation and study. The purpose of the Journal of International Financial Markets, Institutions & Money is to publish rigorous, original articles dealing with the international aspects of financial markets, institutions and money. Theoretical/conceptual and empirical papers providing meaningful insights into the subject areas will be considered. The following topic areas, although not exhaustive, are representative of the coverage in this Journal. • International financial markets • International securities markets • Foreign exchange markets • Eurocurrency markets • International syndications • Term structures of Eurocurrency rates • Determination of exchange rates • Information, speculation and parity • Forward rates and swaps • International payment mechanisms • International commercial banking; • International investment banking • Central bank intervention • International monetary systems • Balance of payments.