麦克斯韦方程在球体外部的分散估计

IF 2.4 2区 数学 Q1 MATHEMATICS
Yan-long Fang , Alden Waters
{"title":"麦克斯韦方程在球体外部的分散估计","authors":"Yan-long Fang ,&nbsp;Alden Waters","doi":"10.1016/j.jde.2024.10.024","DOIUrl":null,"url":null,"abstract":"<div><div>The goal of this article is to establish general principles for high frequency dispersive estimates for Maxwell's equation in the exterior of a perfectly conducting ball. We construct entirely new generalized eigenfunctions for the corresponding Maxwell propagator. We show that the propagator corresponding to the electric field has a global rate of decay in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>−</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> operator norm in terms of time <em>t</em> and powers of <em>h</em>. In particular we show that some, but not all, polarizations of electromagnetic waves scatter at the same rate as the usual wave operator. The Dirichlet Laplacian wave operator <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>−</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> norm estimate should not be expected to hold in general for Maxwell's equations in the exterior of a ball because of the Helmholtz decomposition theorem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"415 ","pages":"Pages 855-885"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersive estimates for Maxwell's equations in the exterior of a sphere\",\"authors\":\"Yan-long Fang ,&nbsp;Alden Waters\",\"doi\":\"10.1016/j.jde.2024.10.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The goal of this article is to establish general principles for high frequency dispersive estimates for Maxwell's equation in the exterior of a perfectly conducting ball. We construct entirely new generalized eigenfunctions for the corresponding Maxwell propagator. We show that the propagator corresponding to the electric field has a global rate of decay in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>−</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> operator norm in terms of time <em>t</em> and powers of <em>h</em>. In particular we show that some, but not all, polarizations of electromagnetic waves scatter at the same rate as the usual wave operator. The Dirichlet Laplacian wave operator <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>−</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> norm estimate should not be expected to hold in general for Maxwell's equations in the exterior of a ball because of the Helmholtz decomposition theorem.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"415 \",\"pages\":\"Pages 855-885\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962400679X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962400679X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是为麦克斯韦方程在完全导电球外部的高频色散估计建立一般原则。我们为相应的麦克斯韦传播子构建了全新的广义特征函数。我们证明了与电场相对应的传播子在 L1-L∞ 算子规范中具有以时间 t 和 h 的幂为单位的全局衰减率。由于亥姆霍兹分解定理的存在,对于球外部的麦克斯韦方程,一般来说,迪里夏特-拉普拉斯波算子 L1-L∞ 规范估计值不应成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dispersive estimates for Maxwell's equations in the exterior of a sphere
The goal of this article is to establish general principles for high frequency dispersive estimates for Maxwell's equation in the exterior of a perfectly conducting ball. We construct entirely new generalized eigenfunctions for the corresponding Maxwell propagator. We show that the propagator corresponding to the electric field has a global rate of decay in L1L operator norm in terms of time t and powers of h. In particular we show that some, but not all, polarizations of electromagnetic waves scatter at the same rate as the usual wave operator. The Dirichlet Laplacian wave operator L1L norm estimate should not be expected to hold in general for Maxwell's equations in the exterior of a ball because of the Helmholtz decomposition theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信