{"title":"模拟三维肿瘤脐带生长的自由边界问题的对称破缺分岔分析","authors":"Junying Chen, Ruixiang Xing","doi":"10.1016/j.jde.2024.10.019","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study a free boundary problem modeling the growth of 3-dimensional tumor cords. Since tumor cells grow freely in both the longitudinal and cross-sectional directions of blood vessels, the investigation of symmetry-breaking phenomena in both directions is biologically very reasonable. This forces the possible bifurcation value <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> to be dependent on two variables <em>m</em> and <em>n</em>. Some monotonicity properties of the possible bifurcation value <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> or <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> obtained in Friedman and Hu (2008) <span><span>[1]</span></span> and He and Xing (2023) <span><span>[2]</span></span> no longer hold here, which brings a great challenge to the bifurcation analysis. The novelty of this paper lies in determining the order of <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> for <span><math><msqrt><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></math></span>. Together with periodicity and symmetry, we propose an effective method to avoid the need for the monotonicity of <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>. We give symmetry-breaking bifurcation results for every <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>></mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry-breaking bifurcation analysis of a free boundary problem modeling 3-dimensional tumor cord growth\",\"authors\":\"Junying Chen, Ruixiang Xing\",\"doi\":\"10.1016/j.jde.2024.10.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study a free boundary problem modeling the growth of 3-dimensional tumor cords. Since tumor cells grow freely in both the longitudinal and cross-sectional directions of blood vessels, the investigation of symmetry-breaking phenomena in both directions is biologically very reasonable. This forces the possible bifurcation value <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> to be dependent on two variables <em>m</em> and <em>n</em>. Some monotonicity properties of the possible bifurcation value <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> or <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> obtained in Friedman and Hu (2008) <span><span>[1]</span></span> and He and Xing (2023) <span><span>[2]</span></span> no longer hold here, which brings a great challenge to the bifurcation analysis. The novelty of this paper lies in determining the order of <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> for <span><math><msqrt><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></math></span>. Together with periodicity and symmetry, we propose an effective method to avoid the need for the monotonicity of <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>. We give symmetry-breaking bifurcation results for every <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>></mo><mn>0</mn></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006752\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006752","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Symmetry-breaking bifurcation analysis of a free boundary problem modeling 3-dimensional tumor cord growth
In this paper, we study a free boundary problem modeling the growth of 3-dimensional tumor cords. Since tumor cells grow freely in both the longitudinal and cross-sectional directions of blood vessels, the investigation of symmetry-breaking phenomena in both directions is biologically very reasonable. This forces the possible bifurcation value to be dependent on two variables m and n. Some monotonicity properties of the possible bifurcation value or obtained in Friedman and Hu (2008) [1] and He and Xing (2023) [2] no longer hold here, which brings a great challenge to the bifurcation analysis. The novelty of this paper lies in determining the order of for . Together with periodicity and symmetry, we propose an effective method to avoid the need for the monotonicity of . We give symmetry-breaking bifurcation results for every .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics