C. Bellavita , V. Daskalogiannis , G. Nikolaidis , G. Stylogiannis
{"title":"广义 Volterra 算子的最优域","authors":"C. Bellavita , V. Daskalogiannis , G. Nikolaidis , G. Stylogiannis","doi":"10.1016/j.jmaa.2024.128978","DOIUrl":null,"url":null,"abstract":"<div><div>For <em>g</em> in BMOA, we consider the generalized Volterra operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> acting on Hardy spaces <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. This article aims to study the largest space of analytic functions, which is mapped by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> into the Hardy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. We call this space the optimal domain of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> and we describe its structural properties. Motivation for this comes from the work of G. Curbera and W. Ricker <span><span>[7]</span></span> who studied the optimal domain of the classical Cesáro operator.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128978"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal domain of generalized Volterra operators\",\"authors\":\"C. Bellavita , V. Daskalogiannis , G. Nikolaidis , G. Stylogiannis\",\"doi\":\"10.1016/j.jmaa.2024.128978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For <em>g</em> in BMOA, we consider the generalized Volterra operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> acting on Hardy spaces <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. This article aims to study the largest space of analytic functions, which is mapped by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> into the Hardy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. We call this space the optimal domain of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> and we describe its structural properties. Motivation for this comes from the work of G. Curbera and W. Ricker <span><span>[7]</span></span> who studied the optimal domain of the classical Cesáro operator.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 128978\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009004\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009004","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于 BMOA 中的 g,我们考虑作用于 Hardy 空间 Hp 的广义 Volterra 算子 Tg。本文旨在研究由 Tg 映射到哈代空间 Hp 的最大解析函数空间。我们称这个空间为 Tg 的最优域,并描述其结构特性。本文的研究动机来自 G. Curbera 和 W. Ricker [7]的工作,他们研究了经典 Cesáro 算子的最优域。
For g in BMOA, we consider the generalized Volterra operator acting on Hardy spaces . This article aims to study the largest space of analytic functions, which is mapped by into the Hardy space . We call this space the optimal domain of and we describe its structural properties. Motivation for this comes from the work of G. Curbera and W. Ricker [7] who studied the optimal domain of the classical Cesáro operator.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.