广义 Volterra 算子的最优域

IF 1.2 3区 数学 Q1 MATHEMATICS
C. Bellavita , V. Daskalogiannis , G. Nikolaidis , G. Stylogiannis
{"title":"广义 Volterra 算子的最优域","authors":"C. Bellavita ,&nbsp;V. Daskalogiannis ,&nbsp;G. Nikolaidis ,&nbsp;G. Stylogiannis","doi":"10.1016/j.jmaa.2024.128978","DOIUrl":null,"url":null,"abstract":"<div><div>For <em>g</em> in BMOA, we consider the generalized Volterra operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> acting on Hardy spaces <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. This article aims to study the largest space of analytic functions, which is mapped by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> into the Hardy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. We call this space the optimal domain of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> and we describe its structural properties. Motivation for this comes from the work of G. Curbera and W. Ricker <span><span>[7]</span></span> who studied the optimal domain of the classical Cesáro operator.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128978"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal domain of generalized Volterra operators\",\"authors\":\"C. Bellavita ,&nbsp;V. Daskalogiannis ,&nbsp;G. Nikolaidis ,&nbsp;G. Stylogiannis\",\"doi\":\"10.1016/j.jmaa.2024.128978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For <em>g</em> in BMOA, we consider the generalized Volterra operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> acting on Hardy spaces <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. This article aims to study the largest space of analytic functions, which is mapped by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> into the Hardy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. We call this space the optimal domain of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> and we describe its structural properties. Motivation for this comes from the work of G. Curbera and W. Ricker <span><span>[7]</span></span> who studied the optimal domain of the classical Cesáro operator.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 128978\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009004\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009004","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于 BMOA 中的 g,我们考虑作用于 Hardy 空间 Hp 的广义 Volterra 算子 Tg。本文旨在研究由 Tg 映射到哈代空间 Hp 的最大解析函数空间。我们称这个空间为 Tg 的最优域,并描述其结构特性。本文的研究动机来自 G. Curbera 和 W. Ricker [7]的工作,他们研究了经典 Cesáro 算子的最优域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal domain of generalized Volterra operators
For g in BMOA, we consider the generalized Volterra operator Tg acting on Hardy spaces Hp. This article aims to study the largest space of analytic functions, which is mapped by Tg into the Hardy space Hp. We call this space the optimal domain of Tg and we describe its structural properties. Motivation for this comes from the work of G. Curbera and W. Ricker [7] who studied the optimal domain of the classical Cesáro operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信