C. Bellavita , V. Daskalogiannis , G. Nikolaidis , G. Stylogiannis
{"title":"广义 Volterra 算子的最优域","authors":"C. Bellavita , V. Daskalogiannis , G. Nikolaidis , G. Stylogiannis","doi":"10.1016/j.jmaa.2024.128978","DOIUrl":null,"url":null,"abstract":"<div><div>For <em>g</em> in BMOA, we consider the generalized Volterra operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> acting on Hardy spaces <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. This article aims to study the largest space of analytic functions, which is mapped by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> into the Hardy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. We call this space the optimal domain of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> and we describe its structural properties. Motivation for this comes from the work of G. Curbera and W. Ricker <span><span>[7]</span></span> who studied the optimal domain of the classical Cesáro operator.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal domain of generalized Volterra operators\",\"authors\":\"C. Bellavita , V. Daskalogiannis , G. Nikolaidis , G. Stylogiannis\",\"doi\":\"10.1016/j.jmaa.2024.128978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For <em>g</em> in BMOA, we consider the generalized Volterra operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> acting on Hardy spaces <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. This article aims to study the largest space of analytic functions, which is mapped by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> into the Hardy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. We call this space the optimal domain of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> and we describe its structural properties. Motivation for this comes from the work of G. Curbera and W. Ricker <span><span>[7]</span></span> who studied the optimal domain of the classical Cesáro operator.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009004\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
对于 BMOA 中的 g,我们考虑作用于 Hardy 空间 Hp 的广义 Volterra 算子 Tg。本文旨在研究由 Tg 映射到哈代空间 Hp 的最大解析函数空间。我们称这个空间为 Tg 的最优域,并描述其结构特性。本文的研究动机来自 G. Curbera 和 W. Ricker [7]的工作,他们研究了经典 Cesáro 算子的最优域。
For g in BMOA, we consider the generalized Volterra operator acting on Hardy spaces . This article aims to study the largest space of analytic functions, which is mapped by into the Hardy space . We call this space the optimal domain of and we describe its structural properties. Motivation for this comes from the work of G. Curbera and W. Ricker [7] who studied the optimal domain of the classical Cesáro operator.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.