空间形式中恒定平均曲率超曲面的局部刚性

IF 1.2 3区 数学 Q1 MATHEMATICS
Yayun Chen , Tongzhu Li
{"title":"空间形式中恒定平均曲率超曲面的局部刚性","authors":"Yayun Chen ,&nbsp;Tongzhu Li","doi":"10.1016/j.jmaa.2024.128974","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the local rigidity of constant mean curvature (CMC) hypersurfaces. Let <span><math><mi>x</mi><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, be a piece of immersed constant mean curvature hypersurface in the <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional space form <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span>. We prove that if the scalar curvature <em>R</em> is constant and the number <em>g</em> of the distinct principal curvatures satisfies <span><math><mi>g</mi><mo>≤</mo><mn>3</mn></math></span>, then <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is an isoparametric hypersurface. Further, if <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a minimal hypersurface, then <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a totally geodesic hypersurface for <span><math><mi>c</mi><mo>≤</mo><mn>0</mn></math></span>, and <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is either a Cartan minimal hypersurface, a Clifford minimal hypersurface, or a totally geodesic hypersurface for <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span>, which solves the high dimensional version of Bryant Conjecture.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128974"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local rigidity of constant mean curvature hypersurfaces in space forms\",\"authors\":\"Yayun Chen ,&nbsp;Tongzhu Li\",\"doi\":\"10.1016/j.jmaa.2024.128974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the local rigidity of constant mean curvature (CMC) hypersurfaces. Let <span><math><mi>x</mi><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, be a piece of immersed constant mean curvature hypersurface in the <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional space form <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span>. We prove that if the scalar curvature <em>R</em> is constant and the number <em>g</em> of the distinct principal curvatures satisfies <span><math><mi>g</mi><mo>≤</mo><mn>3</mn></math></span>, then <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is an isoparametric hypersurface. Further, if <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a minimal hypersurface, then <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a totally geodesic hypersurface for <span><math><mi>c</mi><mo>≤</mo><mn>0</mn></math></span>, and <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is either a Cartan minimal hypersurface, a Clifford minimal hypersurface, or a totally geodesic hypersurface for <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span>, which solves the high dimensional version of Bryant Conjecture.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 128974\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24008965\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008965","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究恒均值曲率(CMC)超曲面的局部刚度。设 x:Mn→Mn+1(c),n≥4 是(n+1)维空间形式 Mn+1(c) 中的一块浸没的恒均值曲率超曲面。我们证明,如果标量曲率 R 是常数,且不同主曲率的个数 g 满足 g≤3,那么 Mn 是等参数超曲面。此外,如果 Mn 是极小超曲面,那么 Mn 对于 c≤0 是完全大地超曲面,并且 Mn 对于 c>0 要么是 Cartan 极小超曲面,要么是 Clifford 极小超曲面,要么是完全大地超曲面,这就解决了高维版本的布赖恩猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local rigidity of constant mean curvature hypersurfaces in space forms
In this paper, we study the local rigidity of constant mean curvature (CMC) hypersurfaces. Let x:MnMn+1(c),n4, be a piece of immersed constant mean curvature hypersurface in the (n+1)-dimensional space form Mn+1(c). We prove that if the scalar curvature R is constant and the number g of the distinct principal curvatures satisfies g3, then Mn is an isoparametric hypersurface. Further, if Mn is a minimal hypersurface, then Mn is a totally geodesic hypersurface for c0, and Mn is either a Cartan minimal hypersurface, a Clifford minimal hypersurface, or a totally geodesic hypersurface for c>0, which solves the high dimensional version of Bryant Conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信