Dezhi Wu, Guang Yang, Jianguo Tao, Yue Wang, Hong Xiao, Hongwei Guo
{"title":"用于变形应用的具有中心对称细胞壁的新型细胞结构","authors":"Dezhi Wu, Guang Yang, Jianguo Tao, Yue Wang, Hong Xiao, Hongwei Guo","doi":"10.1016/j.compstruct.2024.118644","DOIUrl":null,"url":null,"abstract":"<div><div>Cellular structures are potential candidates for the supporting framework of flexible morphing skins. Unlike traditional zero Poisson’s ratio (ZPR) cellular structures with axisymmetric cell walls, this paper proposes a novel cellular structure with center-symmetric cell walls. The in-plane mechanical properties of this novel structure are explored through theoretical analysis and substantiated by both finite element simulations and experimental tests. Compared to the classic accordion honeycomb structure, the elastic modulus in the <em>x</em>-direction of the novel structure is reduced by an average of 58%, the strain amplification rate is increased by 122%, and the in-plane stiffness anisotropy is improved by 200%. These findings suggest that the proposed structure offers far superior stiffness anisotropy and large deformation potential, making it more suitable for morphing applications than the traditional ZPR cellular structures.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"352 ","pages":"Article 118644"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel cellular structure with center-symmetric cell walls for morphing applications\",\"authors\":\"Dezhi Wu, Guang Yang, Jianguo Tao, Yue Wang, Hong Xiao, Hongwei Guo\",\"doi\":\"10.1016/j.compstruct.2024.118644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cellular structures are potential candidates for the supporting framework of flexible morphing skins. Unlike traditional zero Poisson’s ratio (ZPR) cellular structures with axisymmetric cell walls, this paper proposes a novel cellular structure with center-symmetric cell walls. The in-plane mechanical properties of this novel structure are explored through theoretical analysis and substantiated by both finite element simulations and experimental tests. Compared to the classic accordion honeycomb structure, the elastic modulus in the <em>x</em>-direction of the novel structure is reduced by an average of 58%, the strain amplification rate is increased by 122%, and the in-plane stiffness anisotropy is improved by 200%. These findings suggest that the proposed structure offers far superior stiffness anisotropy and large deformation potential, making it more suitable for morphing applications than the traditional ZPR cellular structures.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"352 \",\"pages\":\"Article 118644\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324007724\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007724","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
摘要
细胞结构是柔性变形表皮支撑框架的潜在候选材料。与具有轴对称细胞壁的传统零泊松比(ZPR)细胞结构不同,本文提出了一种具有中心对称细胞壁的新型细胞结构。本文通过理论分析探讨了这种新型结构的平面力学性能,并通过有限元模拟和实验测试加以证实。与经典的风琴式蜂窝结构相比,新型结构 x 方向的弹性模量平均降低了 58%,应变放大率提高了 122%,面内刚度各向异性提高了 200%。这些研究结果表明,与传统的 ZPR 蜂窝结构相比,拟议的结构具有更优越的刚度各向异性和更大的变形潜力,更适合变形应用。
A novel cellular structure with center-symmetric cell walls for morphing applications
Cellular structures are potential candidates for the supporting framework of flexible morphing skins. Unlike traditional zero Poisson’s ratio (ZPR) cellular structures with axisymmetric cell walls, this paper proposes a novel cellular structure with center-symmetric cell walls. The in-plane mechanical properties of this novel structure are explored through theoretical analysis and substantiated by both finite element simulations and experimental tests. Compared to the classic accordion honeycomb structure, the elastic modulus in the x-direction of the novel structure is reduced by an average of 58%, the strain amplification rate is increased by 122%, and the in-plane stiffness anisotropy is improved by 200%. These findings suggest that the proposed structure offers far superior stiffness anisotropy and large deformation potential, making it more suitable for morphing applications than the traditional ZPR cellular structures.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.