{"title":"三维辅助蜂窝芯对浅层夹层圆柱壳传声损耗行为的影响","authors":"Mojtaba Sayad Ghanbari Nezhad , Mehrdad Motavasselolhagh , Roohollah Talebitooti , Fengxian XIN","doi":"10.1016/j.compstruct.2024.118624","DOIUrl":null,"url":null,"abstract":"<div><div>The primary objective of this research is to examine the sound transmission loss (STL) in a shallow sandwich cylindrical shell featuring a 3D auxetic honeycomb core. Initially, the 3D elasticity theory was employed by applying the state vector method and extracting both local and global transfer matrices to calculate STL relations for the cylindrical shell, including the auxetic honeycomb core. Subsequently, boundary conditions were applied to calculate the unknowns, eventually leading to a relationship for calculating STL within the structure. The derived equations were numerically solved using MATLAB software. The validity of the results obtained using this method was examined by comparing them with the findings of other researchers. Moreover, a comparison was conducted involving a large ratio of the curvature radius to thickness, considering both the auxetic honeycomb core and aluminum with equal mass. The results demonstrate a significant increase in STL when utilizing this auxetic honeycomb core compared to a material with the same mass. Specifically, at a frequency of 2 Hz, a significant enhancement of about 29.44 % in STL is observed when increasing the core thickness from 10.39 mm to 20.39 mm. Furthermore, STL results have been obtained for various thicknesses, radius of curvature, and incident angles.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"352 ","pages":"Article 118624"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Three-Dimensional auxetic honeycomb core on behavior of sound transmission loss in shallow sandwich cylindrical shell\",\"authors\":\"Mojtaba Sayad Ghanbari Nezhad , Mehrdad Motavasselolhagh , Roohollah Talebitooti , Fengxian XIN\",\"doi\":\"10.1016/j.compstruct.2024.118624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The primary objective of this research is to examine the sound transmission loss (STL) in a shallow sandwich cylindrical shell featuring a 3D auxetic honeycomb core. Initially, the 3D elasticity theory was employed by applying the state vector method and extracting both local and global transfer matrices to calculate STL relations for the cylindrical shell, including the auxetic honeycomb core. Subsequently, boundary conditions were applied to calculate the unknowns, eventually leading to a relationship for calculating STL within the structure. The derived equations were numerically solved using MATLAB software. The validity of the results obtained using this method was examined by comparing them with the findings of other researchers. Moreover, a comparison was conducted involving a large ratio of the curvature radius to thickness, considering both the auxetic honeycomb core and aluminum with equal mass. The results demonstrate a significant increase in STL when utilizing this auxetic honeycomb core compared to a material with the same mass. Specifically, at a frequency of 2 Hz, a significant enhancement of about 29.44 % in STL is observed when increasing the core thickness from 10.39 mm to 20.39 mm. Furthermore, STL results have been obtained for various thicknesses, radius of curvature, and incident angles.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"352 \",\"pages\":\"Article 118624\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324007529\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007529","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Effect of Three-Dimensional auxetic honeycomb core on behavior of sound transmission loss in shallow sandwich cylindrical shell
The primary objective of this research is to examine the sound transmission loss (STL) in a shallow sandwich cylindrical shell featuring a 3D auxetic honeycomb core. Initially, the 3D elasticity theory was employed by applying the state vector method and extracting both local and global transfer matrices to calculate STL relations for the cylindrical shell, including the auxetic honeycomb core. Subsequently, boundary conditions were applied to calculate the unknowns, eventually leading to a relationship for calculating STL within the structure. The derived equations were numerically solved using MATLAB software. The validity of the results obtained using this method was examined by comparing them with the findings of other researchers. Moreover, a comparison was conducted involving a large ratio of the curvature radius to thickness, considering both the auxetic honeycomb core and aluminum with equal mass. The results demonstrate a significant increase in STL when utilizing this auxetic honeycomb core compared to a material with the same mass. Specifically, at a frequency of 2 Hz, a significant enhancement of about 29.44 % in STL is observed when increasing the core thickness from 10.39 mm to 20.39 mm. Furthermore, STL results have been obtained for various thicknesses, radius of curvature, and incident angles.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.