M.D. Sumption , C. Ebbing , G. Panasyuk , C. Kovacs , G.J.P. Murphy , T. Haugan , E.W. Collings
{"title":"涂层导体堆中的交流损耗和屏蔽:分析建模及与实验的比较","authors":"M.D. Sumption , C. Ebbing , G. Panasyuk , C. Kovacs , G.J.P. Murphy , T. Haugan , E.W. Collings","doi":"10.1016/j.cryogenics.2024.103963","DOIUrl":null,"url":null,"abstract":"<div><div>This work explores the effects of the stacking of coated conductor tapes on their AC loss and penetration fields (<em>B<sub>p</sub></em>). The penetration field <em>B<sub>p</sub></em> and AC loss of short lengths of coated conducted tape stacks are analyzed, measured, and compared to a simple analytic model. The tape widths (<em>w</em>) and number of tapes in the stacks (<em>N<sub>s</sub></em>) were 4 mm (<em>N<sub>s</sub></em> = 1, 3, 5, series-305) and 12 mm (<em>N<sub>s</sub></em> = 1–40, series-244). Experimentally, the losses of the series-244 and series-305 tape stacks were measured in a spinning magnet calorimeter (SMC) in which the samples are exposed to a spinning field of frequency, <em>f</em>, up to 110 Hz and amplitude <em>B<sub>0</sub></em> = 566 mT and the power is measured by a calibrated boil-off calorimeter. These results were compared to calculated loss as a function of <em>N<sub>s</sub></em> for both tapes. In addition, the calculated <em>B<sub>p</sub></em> was plotted vs <em>N<sub>s</sub></em>. The basic effect observed was that stacking coated conductor tapes tended to form an effective composite with an increase <em>B<sub>p,comp</sub></em> and modified loss (For <em>B<sub>0</sub></em> < <em>B<sub>p,comp</sub></em>, <em>P<sub>tot</sub></em> was reduced with <em>N<sub>s</sub>,</em> the effect saturating for <em>N<sub>s</sub></em> > 20). This could be understood in terms of treating a stack of conductors as a composite described in terms of a Brandt equations applied to a dilute superconductor. The results show and model the significantly reduced loss that stacks of conductors can have significantly for moderate levels of applied field. Such results are directly transferrable to cables of stacked strands.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"144 ","pages":"Article 103963"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AC loss and shielding in stacks of coated conductors: Analytic modelling and comparison to experiment\",\"authors\":\"M.D. Sumption , C. Ebbing , G. Panasyuk , C. Kovacs , G.J.P. Murphy , T. Haugan , E.W. Collings\",\"doi\":\"10.1016/j.cryogenics.2024.103963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work explores the effects of the stacking of coated conductor tapes on their AC loss and penetration fields (<em>B<sub>p</sub></em>). The penetration field <em>B<sub>p</sub></em> and AC loss of short lengths of coated conducted tape stacks are analyzed, measured, and compared to a simple analytic model. The tape widths (<em>w</em>) and number of tapes in the stacks (<em>N<sub>s</sub></em>) were 4 mm (<em>N<sub>s</sub></em> = 1, 3, 5, series-305) and 12 mm (<em>N<sub>s</sub></em> = 1–40, series-244). Experimentally, the losses of the series-244 and series-305 tape stacks were measured in a spinning magnet calorimeter (SMC) in which the samples are exposed to a spinning field of frequency, <em>f</em>, up to 110 Hz and amplitude <em>B<sub>0</sub></em> = 566 mT and the power is measured by a calibrated boil-off calorimeter. These results were compared to calculated loss as a function of <em>N<sub>s</sub></em> for both tapes. In addition, the calculated <em>B<sub>p</sub></em> was plotted vs <em>N<sub>s</sub></em>. The basic effect observed was that stacking coated conductor tapes tended to form an effective composite with an increase <em>B<sub>p,comp</sub></em> and modified loss (For <em>B<sub>0</sub></em> < <em>B<sub>p,comp</sub></em>, <em>P<sub>tot</sub></em> was reduced with <em>N<sub>s</sub>,</em> the effect saturating for <em>N<sub>s</sub></em> > 20). This could be understood in terms of treating a stack of conductors as a composite described in terms of a Brandt equations applied to a dilute superconductor. The results show and model the significantly reduced loss that stacks of conductors can have significantly for moderate levels of applied field. Such results are directly transferrable to cables of stacked strands.</div></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":\"144 \",\"pages\":\"Article 103963\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227524001838\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524001838","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
AC loss and shielding in stacks of coated conductors: Analytic modelling and comparison to experiment
This work explores the effects of the stacking of coated conductor tapes on their AC loss and penetration fields (Bp). The penetration field Bp and AC loss of short lengths of coated conducted tape stacks are analyzed, measured, and compared to a simple analytic model. The tape widths (w) and number of tapes in the stacks (Ns) were 4 mm (Ns = 1, 3, 5, series-305) and 12 mm (Ns = 1–40, series-244). Experimentally, the losses of the series-244 and series-305 tape stacks were measured in a spinning magnet calorimeter (SMC) in which the samples are exposed to a spinning field of frequency, f, up to 110 Hz and amplitude B0 = 566 mT and the power is measured by a calibrated boil-off calorimeter. These results were compared to calculated loss as a function of Ns for both tapes. In addition, the calculated Bp was plotted vs Ns. The basic effect observed was that stacking coated conductor tapes tended to form an effective composite with an increase Bp,comp and modified loss (For B0 < Bp,comp, Ptot was reduced with Ns, the effect saturating for Ns > 20). This could be understood in terms of treating a stack of conductors as a composite described in terms of a Brandt equations applied to a dilute superconductor. The results show and model the significantly reduced loss that stacks of conductors can have significantly for moderate levels of applied field. Such results are directly transferrable to cables of stacked strands.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics