基于量值的线性回归模型稳健 Kibria-Lukman 估计器,用于消除多重共线性和异常值:利用 T20 板球运动和人体测量数据的实际应用

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Danish Wasim , Muhammad Suhail , Sajjad Ahmad Khan , Maha Shabbir , Fuad A. Awwad , Emad A.A. Ismail , Hijaz Ahmad , Amjad Ali
{"title":"基于量值的线性回归模型稳健 Kibria-Lukman 估计器,用于消除多重共线性和异常值:利用 T20 板球运动和人体测量数据的实际应用","authors":"Danish Wasim ,&nbsp;Muhammad Suhail ,&nbsp;Sajjad Ahmad Khan ,&nbsp;Maha Shabbir ,&nbsp;Fuad A. Awwad ,&nbsp;Emad A.A. Ismail ,&nbsp;Hijaz Ahmad ,&nbsp;Amjad Ali","doi":"10.1016/j.kjs.2024.100336","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of ordinary least squares (OLS) and ridge regression (RR) are influenced when outliers are present in y-direction with multicollinearity among independent variables. The robust RR with ridge parameters provides a biased estimator that has a smaller variance than conventional OLS and RR estimators. The optimal value of the ridge parameter has a vital role in bias-variance tradeoff. This study proposes quantile-based estimation of ridge parameter in robust RR to deal with the joint issue of y-direction outliers and multicollinearity. The effectiveness of the proposed estimators is evaluated using intensive Monte Carlo simulation and two real data sets in terms of mean square error (MSE) and predictions sum of squared error (PSSE) criterion. Simulation findings reveal that the newly developed estimators of ridge parameter in robust RR have better performance than OLS, RR, and existing robust RR estimators when errors are normally and non-normally distributed. The results from two numerical examples of T20 Cricket sports and anthropometric data show that the new estimator with quantile probability 0.50 and 0.99 respectively has winning performance among all competing and proposed estimators.</div></div>","PeriodicalId":17848,"journal":{"name":"Kuwait Journal of Science","volume":"52 1","pages":"Article 100336"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantile-based robust Kibria–Lukman estimator for linear regression model to combat multicollinearity and outliers: Real life applications using T20 cricket sports and anthropometric data\",\"authors\":\"Danish Wasim ,&nbsp;Muhammad Suhail ,&nbsp;Sajjad Ahmad Khan ,&nbsp;Maha Shabbir ,&nbsp;Fuad A. Awwad ,&nbsp;Emad A.A. Ismail ,&nbsp;Hijaz Ahmad ,&nbsp;Amjad Ali\",\"doi\":\"10.1016/j.kjs.2024.100336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The performance of ordinary least squares (OLS) and ridge regression (RR) are influenced when outliers are present in y-direction with multicollinearity among independent variables. The robust RR with ridge parameters provides a biased estimator that has a smaller variance than conventional OLS and RR estimators. The optimal value of the ridge parameter has a vital role in bias-variance tradeoff. This study proposes quantile-based estimation of ridge parameter in robust RR to deal with the joint issue of y-direction outliers and multicollinearity. The effectiveness of the proposed estimators is evaluated using intensive Monte Carlo simulation and two real data sets in terms of mean square error (MSE) and predictions sum of squared error (PSSE) criterion. Simulation findings reveal that the newly developed estimators of ridge parameter in robust RR have better performance than OLS, RR, and existing robust RR estimators when errors are normally and non-normally distributed. The results from two numerical examples of T20 Cricket sports and anthropometric data show that the new estimator with quantile probability 0.50 and 0.99 respectively has winning performance among all competing and proposed estimators.</div></div>\",\"PeriodicalId\":17848,\"journal\":{\"name\":\"Kuwait Journal of Science\",\"volume\":\"52 1\",\"pages\":\"Article 100336\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kuwait Journal of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2307410824001615\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307410824001615","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

当自变量之间存在多重共线性时,Y 方向的异常值会影响普通最小二乘法(OLS)和脊回归(RR)的性能。与传统的 OLS 和 RR 估计器相比,带有脊参数的稳健 RR 估计器提供了一个方差较小的有偏估计器。脊参数的最佳值在偏差-方差权衡中起着至关重要的作用。本研究在稳健 RR 中提出了基于量化的脊参数估计,以解决 y 方向异常值和多重共线性的共同问题。利用密集蒙特卡罗模拟和两个真实数据集,从均方误差(MSE)和预测平方误差之和(PSSE)标准的角度评估了所提出的估计器的有效性。仿真结果表明,当误差呈正态分布和非正态分布时,新开发的鲁棒 RR 的脊参数估计器比 OLS、RR 和现有的鲁棒 RR 估计器性能更好。T20 板球运动和人体测量数据这两个数字实例的结果表明,量子概率分别为 0.50 和 0.99 的新估计器在所有竞争估计器和建议估计器中表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantile-based robust Kibria–Lukman estimator for linear regression model to combat multicollinearity and outliers: Real life applications using T20 cricket sports and anthropometric data
The performance of ordinary least squares (OLS) and ridge regression (RR) are influenced when outliers are present in y-direction with multicollinearity among independent variables. The robust RR with ridge parameters provides a biased estimator that has a smaller variance than conventional OLS and RR estimators. The optimal value of the ridge parameter has a vital role in bias-variance tradeoff. This study proposes quantile-based estimation of ridge parameter in robust RR to deal with the joint issue of y-direction outliers and multicollinearity. The effectiveness of the proposed estimators is evaluated using intensive Monte Carlo simulation and two real data sets in terms of mean square error (MSE) and predictions sum of squared error (PSSE) criterion. Simulation findings reveal that the newly developed estimators of ridge parameter in robust RR have better performance than OLS, RR, and existing robust RR estimators when errors are normally and non-normally distributed. The results from two numerical examples of T20 Cricket sports and anthropometric data show that the new estimator with quantile probability 0.50 and 0.99 respectively has winning performance among all competing and proposed estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kuwait Journal of Science
Kuwait Journal of Science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
28.60%
发文量
132
期刊介绍: Kuwait Journal of Science (KJS) is indexed and abstracted by major publishing houses such as Chemical Abstract, Science Citation Index, Current contents, Mathematics Abstract, Micribiological Abstracts etc. KJS publishes peer-review articles in various fields of Science including Mathematics, Computer Science, Physics, Statistics, Biology, Chemistry and Earth & Environmental Sciences. In addition, it also aims to bring the results of scientific research carried out under a variety of intellectual traditions and organizations to the attention of specialized scholarly readership. As such, the publisher expects the submission of original manuscripts which contain analysis and solutions about important theoretical, empirical and normative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信