揭示原子分散金在促进光催化二氧化碳还原和芳基醇氧化中的作用

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED
{"title":"揭示原子分散金在促进光催化二氧化碳还原和芳基醇氧化中的作用","authors":"","doi":"10.1016/S1872-2067(24)60109-9","DOIUrl":null,"url":null,"abstract":"<div><div>Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity, abundant surface active sites, and efficient charge separation. Nevertheless, the roles of different forms of atomically-dispersed metals (<em>i</em>.<em>e</em>., single-atoms and atomic clusters) in photocatalytic reactions remain ambiguous. Herein, we developed an ethylenediamine (EDA)-assisted reduction method to controllably synthesize atomically dispersed Au in the forms of Au single atoms (Au<sub>SA</sub>), Au clusters (Au<sub>C</sub>), and a mixed-phase of Au<sub>SA</sub> and Au<sub>C</sub> (Au<sub>SA+C</sub>) on CdS. In addition, we elucidate the synergistic effect of Au<sub>SA</sub> and Au<sub>C</sub> in enhancing the photocatalytic performance of CdS substrates for simultaneous CO<sub>2</sub> reduction and aryl alcohol oxidation. Specifically, Au<sub>SA</sub> can effectively lower the energy barrier for the CO<sub>2</sub>→*COOH conversion, while Au<sub>C</sub> can enhance the adsorption of alcohols and reduce the energy barrier for dehydrogenation. As a result, the Au<sub>SA</sub> and Au<sub>C</sub> co-loaded CdS show impressive overall photocatalytic CO<sub>2</sub> conversion performance, achieving remarkable CO and BAD production rates of 4.43 and 4.71 mmol g<sup>−1</sup> h<sup>−1</sup>, with the selectivities of 93% and 99%, respectively. More importantly, the solar-to-chemical conversion efficiency of Au<sub>SA+C</sub>/CdS reaches 0.57%, which is over fivefold higher than the typical solar-to-biomass conversion efficiency found in nature (<em>ca</em>. 0.1%). This study comprehensively describes the roles of different forms of atomically-dispersed metals and their synergistic effects in photocatalytic reactions, which is anticipated to pave a new avenue in energy and environmental applications.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the roles of atomically-dispersed Au in boosting photocatalytic CO2 reduction and aryl alcohol oxidation\",\"authors\":\"\",\"doi\":\"10.1016/S1872-2067(24)60109-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity, abundant surface active sites, and efficient charge separation. Nevertheless, the roles of different forms of atomically-dispersed metals (<em>i</em>.<em>e</em>., single-atoms and atomic clusters) in photocatalytic reactions remain ambiguous. Herein, we developed an ethylenediamine (EDA)-assisted reduction method to controllably synthesize atomically dispersed Au in the forms of Au single atoms (Au<sub>SA</sub>), Au clusters (Au<sub>C</sub>), and a mixed-phase of Au<sub>SA</sub> and Au<sub>C</sub> (Au<sub>SA+C</sub>) on CdS. In addition, we elucidate the synergistic effect of Au<sub>SA</sub> and Au<sub>C</sub> in enhancing the photocatalytic performance of CdS substrates for simultaneous CO<sub>2</sub> reduction and aryl alcohol oxidation. Specifically, Au<sub>SA</sub> can effectively lower the energy barrier for the CO<sub>2</sub>→*COOH conversion, while Au<sub>C</sub> can enhance the adsorption of alcohols and reduce the energy barrier for dehydrogenation. As a result, the Au<sub>SA</sub> and Au<sub>C</sub> co-loaded CdS show impressive overall photocatalytic CO<sub>2</sub> conversion performance, achieving remarkable CO and BAD production rates of 4.43 and 4.71 mmol g<sup>−1</sup> h<sup>−1</sup>, with the selectivities of 93% and 99%, respectively. More importantly, the solar-to-chemical conversion efficiency of Au<sub>SA+C</sub>/CdS reaches 0.57%, which is over fivefold higher than the typical solar-to-biomass conversion efficiency found in nature (<em>ca</em>. 0.1%). This study comprehensively describes the roles of different forms of atomically-dispersed metals and their synergistic effects in photocatalytic reactions, which is anticipated to pave a new avenue in energy and environmental applications.</div></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724601099\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601099","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

原子分散金属材料具有催化活性高、表面活性位点丰富、电荷分离效率高等特点,是一类新兴的光催化剂。然而,不同形式的原子分散金属(即单原子和原子团簇)在光催化反应中的作用仍不明确。在此,我们开发了一种乙二胺(EDA)辅助还原法,在 CdS 上可控地合成了原子分散金,其形式包括金单质(AuSA)、金团簇(AuC)以及 AuSA 和 AuC 的混合相(AuSA+C)。此外,我们还阐明了 AuSA 和 AuC 在提高 CdS 底物同时进行二氧化碳还原和芳基醇氧化的光催化性能方面的协同效应。具体来说,AuSA 可有效降低 CO2→*COOH 转化的能障,而 AuC 可增强对醇的吸附并降低脱氢的能障。因此,AuSA 和 AuC 共同负载的 CdS 显示出令人印象深刻的整体光催化 CO2 转化性能,显著的 CO 和 BAD 生成率分别达到 4.43 和 4.71 mmol g-1 h-1,选择性分别为 93% 和 99%。更重要的是,AuSA+C/CdS 的太阳能-化学转化效率达到 0.57%,比自然界中典型的太阳能-生物质转化效率(约 0.1%)高出五倍以上。这项研究全面描述了不同形式的原子分散金属在光催化反应中的作用及其协同效应,有望为能源和环境应用开辟一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling the roles of atomically-dispersed Au in boosting photocatalytic CO2 reduction and aryl alcohol oxidation
Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity, abundant surface active sites, and efficient charge separation. Nevertheless, the roles of different forms of atomically-dispersed metals (i.e., single-atoms and atomic clusters) in photocatalytic reactions remain ambiguous. Herein, we developed an ethylenediamine (EDA)-assisted reduction method to controllably synthesize atomically dispersed Au in the forms of Au single atoms (AuSA), Au clusters (AuC), and a mixed-phase of AuSA and AuC (AuSA+C) on CdS. In addition, we elucidate the synergistic effect of AuSA and AuC in enhancing the photocatalytic performance of CdS substrates for simultaneous CO2 reduction and aryl alcohol oxidation. Specifically, AuSA can effectively lower the energy barrier for the CO2→*COOH conversion, while AuC can enhance the adsorption of alcohols and reduce the energy barrier for dehydrogenation. As a result, the AuSA and AuC co-loaded CdS show impressive overall photocatalytic CO2 conversion performance, achieving remarkable CO and BAD production rates of 4.43 and 4.71 mmol g−1 h−1, with the selectivities of 93% and 99%, respectively. More importantly, the solar-to-chemical conversion efficiency of AuSA+C/CdS reaches 0.57%, which is over fivefold higher than the typical solar-to-biomass conversion efficiency found in nature (ca. 0.1%). This study comprehensively describes the roles of different forms of atomically-dispersed metals and their synergistic effects in photocatalytic reactions, which is anticipated to pave a new avenue in energy and environmental applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信