{"title":"高阶薛定谔算子的无穷小相对有界性特征","authors":"Jun Cao , Mengyao Gao , Yongyang Jin , Chao Wang","doi":"10.1016/j.jmaa.2024.128975","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>m</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><mi>H</mi><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>m</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi></math></span> be a higher order Schrödinger operators in the Euclidean space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><mi>V</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. In this paper, the authors characterize the infinitesimal relative boundedness and Trudinger's subordination for <em>H</em> on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, via the limit behavior of the family of operators <span><math><msub><mrow><mo>{</mo><mi>V</mi><msup><mrow><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>m</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>}</mo></mrow><mrow><mi>λ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></msub></math></span> and a generalized Kato-type class condition. The latter is weaker than the classical Kato class condition corresponding to the case <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span>. All these characterizations are new even when <span><math><mi>H</mi><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>V</mi></math></span> is a second order Schrödinger operator.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128975"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of infinitesimal relative boundedness for higher order Schrödinger operators\",\"authors\":\"Jun Cao , Mengyao Gao , Yongyang Jin , Chao Wang\",\"doi\":\"10.1016/j.jmaa.2024.128975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>m</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><mi>H</mi><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>m</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi></math></span> be a higher order Schrödinger operators in the Euclidean space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><mi>V</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. In this paper, the authors characterize the infinitesimal relative boundedness and Trudinger's subordination for <em>H</em> on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, via the limit behavior of the family of operators <span><math><msub><mrow><mo>{</mo><mi>V</mi><msup><mrow><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>m</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>}</mo></mrow><mrow><mi>λ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></msub></math></span> and a generalized Kato-type class condition. The latter is weaker than the classical Kato class condition corresponding to the case <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span>. All these characterizations are new even when <span><math><mi>H</mi><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>V</mi></math></span> is a second order Schrödinger operator.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 128975\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24008977\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008977","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Characterizations of infinitesimal relative boundedness for higher order Schrödinger operators
Let and be a higher order Schrödinger operators in the Euclidean space with . In this paper, the authors characterize the infinitesimal relative boundedness and Trudinger's subordination for H on with , via the limit behavior of the family of operators and a generalized Kato-type class condition. The latter is weaker than the classical Kato class condition corresponding to the case . All these characterizations are new even when is a second order Schrödinger operator.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.