Arooj Azhar, Sidra Ijaz, Ayesha Jabeen, Attiya Kamal, Aftab Bashir, Kauser Abdulla Malik
{"title":"转录因子 TaNF-YB4 在小麦中的过表达可提高植物活力和产量","authors":"Arooj Azhar, Sidra Ijaz, Ayesha Jabeen, Attiya Kamal, Aftab Bashir, Kauser Abdulla Malik","doi":"10.1016/j.cpb.2024.100394","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing food security is a priority in developing countries. This study aimed to improve wheat yield by overexpressing the <em>TaNF-YB4</em> transcription factor, which is involved in carbon assimilation and stress tolerance. An expression cassette for <em>TaNF-YB4</em> was developed in a modified wheat transformation vector (pSB219) and examined through transient expression in <em>Nicotiana tabacum</em>, followed by <em>Agrobacterium</em>-mediated transformation of wheat variety FSD-2008. T<sub>0</sub> transgenic plants were propagated to obtain T<sub>3</sub> generation PCR-positive plants. Transgene expression was assessed in PCR-verified T<sub>2</sub> plants using RT-PCR and qRT-PCR at six weeks post-germination. qRT-PCR analysis using the ΔΔCT method indicated higher <em>TaNF-YB4</em> expression in transgenic lines than in the wild-type control plants. Improved agronomic and phenotypic traits were observed with a 6–36 % increase in 1000-grain weight in the selected transgenic lines. Root architecture assessments demonstrated enhanced root length, surface area, and projected area in transgenic lines compared with wild-type plants. Additionally, notable variances in total chlorophyll, protein, and sugar content levels were observed between the transgenic lines and control plants, demonstrating statistical significance with a p-value ≤ 0.05. This study indicates that low-level constitutive expression of <em>TaNF-YB4</em> can enhance wheat yield, presenting a viable strategy for improving wheat productivity.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"40 ","pages":"Article 100394"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The transcription factor TaNF-YB4 overexpression in wheat increases plant vigor and yield\",\"authors\":\"Arooj Azhar, Sidra Ijaz, Ayesha Jabeen, Attiya Kamal, Aftab Bashir, Kauser Abdulla Malik\",\"doi\":\"10.1016/j.cpb.2024.100394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Addressing food security is a priority in developing countries. This study aimed to improve wheat yield by overexpressing the <em>TaNF-YB4</em> transcription factor, which is involved in carbon assimilation and stress tolerance. An expression cassette for <em>TaNF-YB4</em> was developed in a modified wheat transformation vector (pSB219) and examined through transient expression in <em>Nicotiana tabacum</em>, followed by <em>Agrobacterium</em>-mediated transformation of wheat variety FSD-2008. T<sub>0</sub> transgenic plants were propagated to obtain T<sub>3</sub> generation PCR-positive plants. Transgene expression was assessed in PCR-verified T<sub>2</sub> plants using RT-PCR and qRT-PCR at six weeks post-germination. qRT-PCR analysis using the ΔΔCT method indicated higher <em>TaNF-YB4</em> expression in transgenic lines than in the wild-type control plants. Improved agronomic and phenotypic traits were observed with a 6–36 % increase in 1000-grain weight in the selected transgenic lines. Root architecture assessments demonstrated enhanced root length, surface area, and projected area in transgenic lines compared with wild-type plants. Additionally, notable variances in total chlorophyll, protein, and sugar content levels were observed between the transgenic lines and control plants, demonstrating statistical significance with a p-value ≤ 0.05. This study indicates that low-level constitutive expression of <em>TaNF-YB4</em> can enhance wheat yield, presenting a viable strategy for improving wheat productivity.</div></div>\",\"PeriodicalId\":38090,\"journal\":{\"name\":\"Current Plant Biology\",\"volume\":\"40 \",\"pages\":\"Article 100394\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214662824000768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662824000768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The transcription factor TaNF-YB4 overexpression in wheat increases plant vigor and yield
Addressing food security is a priority in developing countries. This study aimed to improve wheat yield by overexpressing the TaNF-YB4 transcription factor, which is involved in carbon assimilation and stress tolerance. An expression cassette for TaNF-YB4 was developed in a modified wheat transformation vector (pSB219) and examined through transient expression in Nicotiana tabacum, followed by Agrobacterium-mediated transformation of wheat variety FSD-2008. T0 transgenic plants were propagated to obtain T3 generation PCR-positive plants. Transgene expression was assessed in PCR-verified T2 plants using RT-PCR and qRT-PCR at six weeks post-germination. qRT-PCR analysis using the ΔΔCT method indicated higher TaNF-YB4 expression in transgenic lines than in the wild-type control plants. Improved agronomic and phenotypic traits were observed with a 6–36 % increase in 1000-grain weight in the selected transgenic lines. Root architecture assessments demonstrated enhanced root length, surface area, and projected area in transgenic lines compared with wild-type plants. Additionally, notable variances in total chlorophyll, protein, and sugar content levels were observed between the transgenic lines and control plants, demonstrating statistical significance with a p-value ≤ 0.05. This study indicates that low-level constitutive expression of TaNF-YB4 can enhance wheat yield, presenting a viable strategy for improving wheat productivity.
期刊介绍:
Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.