{"title":"深度学习应用的弹性:关于分析和加固技术的系统性文献综述","authors":"Cristiana Bolchini, Luca Cassano, Antonio Miele","doi":"10.1016/j.cosrev.2024.100682","DOIUrl":null,"url":null,"abstract":"<div><div>Machine Learning (ML) is currently being exploited in numerous applications, being one of the most effective Artificial Intelligence (AI) technologies used in diverse fields, such as vision, autonomous systems, and the like. The trend motivated a significant amount of contributions to the analysis and design of ML applications against faults affecting the underlying hardware. The authors investigate the existing body of knowledge on Deep Learning (among ML techniques) resilience against hardware faults systematically through a thoughtful review in which the strengths and weaknesses of this literature stream are presented clearly and then future avenues of research are set out. The review reports 85 scientific articles published between January 2019 and March 2024, after carefully analysing 222 contributions (from an initial screening of eligible 244 publications). The authors adopt a classifying framework to interpret and highlight research similarities and peculiarities, based on several parameters, starting from the main scope of the work, the adopted fault and error models, to their reproducibility. This framework allows for a comparison of the different solutions and the identification of possible synergies. Furthermore, suggestions concerning the future direction of research are proposed in the form of open challenges to be addressed.</div></div>","PeriodicalId":48633,"journal":{"name":"Computer Science Review","volume":"54 ","pages":"Article 100682"},"PeriodicalIF":13.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilience of deep learning applications: A systematic literature review of analysis and hardening techniques\",\"authors\":\"Cristiana Bolchini, Luca Cassano, Antonio Miele\",\"doi\":\"10.1016/j.cosrev.2024.100682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine Learning (ML) is currently being exploited in numerous applications, being one of the most effective Artificial Intelligence (AI) technologies used in diverse fields, such as vision, autonomous systems, and the like. The trend motivated a significant amount of contributions to the analysis and design of ML applications against faults affecting the underlying hardware. The authors investigate the existing body of knowledge on Deep Learning (among ML techniques) resilience against hardware faults systematically through a thoughtful review in which the strengths and weaknesses of this literature stream are presented clearly and then future avenues of research are set out. The review reports 85 scientific articles published between January 2019 and March 2024, after carefully analysing 222 contributions (from an initial screening of eligible 244 publications). The authors adopt a classifying framework to interpret and highlight research similarities and peculiarities, based on several parameters, starting from the main scope of the work, the adopted fault and error models, to their reproducibility. This framework allows for a comparison of the different solutions and the identification of possible synergies. Furthermore, suggestions concerning the future direction of research are proposed in the form of open challenges to be addressed.</div></div>\",\"PeriodicalId\":48633,\"journal\":{\"name\":\"Computer Science Review\",\"volume\":\"54 \",\"pages\":\"Article 100682\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574013724000662\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science Review","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574013724000662","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Resilience of deep learning applications: A systematic literature review of analysis and hardening techniques
Machine Learning (ML) is currently being exploited in numerous applications, being one of the most effective Artificial Intelligence (AI) technologies used in diverse fields, such as vision, autonomous systems, and the like. The trend motivated a significant amount of contributions to the analysis and design of ML applications against faults affecting the underlying hardware. The authors investigate the existing body of knowledge on Deep Learning (among ML techniques) resilience against hardware faults systematically through a thoughtful review in which the strengths and weaknesses of this literature stream are presented clearly and then future avenues of research are set out. The review reports 85 scientific articles published between January 2019 and March 2024, after carefully analysing 222 contributions (from an initial screening of eligible 244 publications). The authors adopt a classifying framework to interpret and highlight research similarities and peculiarities, based on several parameters, starting from the main scope of the work, the adopted fault and error models, to their reproducibility. This framework allows for a comparison of the different solutions and the identification of possible synergies. Furthermore, suggestions concerning the future direction of research are proposed in the form of open challenges to be addressed.
期刊介绍:
Computer Science Review, a publication dedicated to research surveys and expository overviews of open problems in computer science, targets a broad audience within the field seeking comprehensive insights into the latest developments. The journal welcomes articles from various fields as long as their content impacts the advancement of computer science. In particular, articles that review the application of well-known Computer Science methods to other areas are in scope only if these articles advance the fundamental understanding of those methods.