{"title":"用于伽马射线观测的 DAMPE PSF 校准","authors":"Kai-Kai Duan , Zhao-Qiang Shen , Zun-Lei Xu , Wei Jiang , Xiang Li","doi":"10.1016/j.astropartphys.2024.103058","DOIUrl":null,"url":null,"abstract":"<div><div>The DArk Matter Particle Explorer (DAMPE) is dedicated to exploring critical scientific domains including the indirect detection of dark matter, cosmic ray physics, and gamma ray astronomy. This study introduces a novel method for calibrating the Point Spread Function (PSF) of DAMPE, specifically designed to enhance the accuracy of gamma-ray observations. By leveraging data from regions near pulsars and bright Active Galactic Nuclei (AGNs), we have refined the PSF calibration process, resulting in an improved angular resolution that closely matches our observational data. This advancement significantly boosts the precision of gamma-ray detection by DAMPE, thereby contributing to its mission objectives in dark matter detection and gamma ray astronomy.</div></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"165 ","pages":"Article 103058"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PSF calibration of DAMPE for gamma-ray observations\",\"authors\":\"Kai-Kai Duan , Zhao-Qiang Shen , Zun-Lei Xu , Wei Jiang , Xiang Li\",\"doi\":\"10.1016/j.astropartphys.2024.103058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The DArk Matter Particle Explorer (DAMPE) is dedicated to exploring critical scientific domains including the indirect detection of dark matter, cosmic ray physics, and gamma ray astronomy. This study introduces a novel method for calibrating the Point Spread Function (PSF) of DAMPE, specifically designed to enhance the accuracy of gamma-ray observations. By leveraging data from regions near pulsars and bright Active Galactic Nuclei (AGNs), we have refined the PSF calibration process, resulting in an improved angular resolution that closely matches our observational data. This advancement significantly boosts the precision of gamma-ray detection by DAMPE, thereby contributing to its mission objectives in dark matter detection and gamma ray astronomy.</div></div>\",\"PeriodicalId\":55439,\"journal\":{\"name\":\"Astroparticle Physics\",\"volume\":\"165 \",\"pages\":\"Article 103058\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092765052400135X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092765052400135X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
PSF calibration of DAMPE for gamma-ray observations
The DArk Matter Particle Explorer (DAMPE) is dedicated to exploring critical scientific domains including the indirect detection of dark matter, cosmic ray physics, and gamma ray astronomy. This study introduces a novel method for calibrating the Point Spread Function (PSF) of DAMPE, specifically designed to enhance the accuracy of gamma-ray observations. By leveraging data from regions near pulsars and bright Active Galactic Nuclei (AGNs), we have refined the PSF calibration process, resulting in an improved angular resolution that closely matches our observational data. This advancement significantly boosts the precision of gamma-ray detection by DAMPE, thereby contributing to its mission objectives in dark matter detection and gamma ray astronomy.
期刊介绍:
Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.