Simone Borneto, Carlo Cravero, Alessandro Lamberti, Davide Marsano
{"title":"熔融玻璃槽中气泡效应的模拟和建模方法","authors":"Simone Borneto, Carlo Cravero, Alessandro Lamberti, Davide Marsano","doi":"10.1016/j.ijmultiphaseflow.2024.105025","DOIUrl":null,"url":null,"abstract":"<div><div>The usage of air bubblers plays an important role in the glass-making industrial process because it enhances the global heat transfer efficiency and especially the uniformity and quality of the finished products. However, glass manufacturers rely on field practice to run their plants, due to the extreme difficulty of conducting experimental investigations in melting tanks. CFD analysis represents a powerful tool to optimize operating parameters and positioning of bubblers and other components, not only in existing plants, but also in the design of new furnaces.</div><div>In the present paper, the behaviour of bubble columns in highly viscous liquids at high temperature was analysed using the Eulerian multiphase model. The macroscopic effect of the column on the surrounding fluid was translated in a locally momentum source term that was introduced in the single-phase CFD model developed in this study. This solution approximates the multiphase nature of the problem in a reliable way and it is of fast integration in comprehensive models of furnaces.</div><div>A clear methodology to determine the diameter of the bubbles and the velocity of the bubble chain in the buoyancy source term calculus are presented and analysed in detail. In addition, a validation process based on the comparison with other theoretical and empirical studies on the subject was carried out in detail: it includes the evaluation of the bubble chains properties and effects by varying the liquid viscosity and the inlet gas flow, that is the real operational parameter in industry. Moreover, the effects of the variable height of the bubblers were investigated using the results of a single-phase model of a real industrial glass tank.</div><div>The analysis of the obtained results shows that the model and the calculation methodologies followed in this work can be effectively applied in the dimensioning process of industrial glass tanks or to optimize existing plants.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"181 ","pages":"Article 105025"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and modelling approach for bubblers effect into molten glass tank\",\"authors\":\"Simone Borneto, Carlo Cravero, Alessandro Lamberti, Davide Marsano\",\"doi\":\"10.1016/j.ijmultiphaseflow.2024.105025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The usage of air bubblers plays an important role in the glass-making industrial process because it enhances the global heat transfer efficiency and especially the uniformity and quality of the finished products. However, glass manufacturers rely on field practice to run their plants, due to the extreme difficulty of conducting experimental investigations in melting tanks. CFD analysis represents a powerful tool to optimize operating parameters and positioning of bubblers and other components, not only in existing plants, but also in the design of new furnaces.</div><div>In the present paper, the behaviour of bubble columns in highly viscous liquids at high temperature was analysed using the Eulerian multiphase model. The macroscopic effect of the column on the surrounding fluid was translated in a locally momentum source term that was introduced in the single-phase CFD model developed in this study. This solution approximates the multiphase nature of the problem in a reliable way and it is of fast integration in comprehensive models of furnaces.</div><div>A clear methodology to determine the diameter of the bubbles and the velocity of the bubble chain in the buoyancy source term calculus are presented and analysed in detail. In addition, a validation process based on the comparison with other theoretical and empirical studies on the subject was carried out in detail: it includes the evaluation of the bubble chains properties and effects by varying the liquid viscosity and the inlet gas flow, that is the real operational parameter in industry. Moreover, the effects of the variable height of the bubblers were investigated using the results of a single-phase model of a real industrial glass tank.</div><div>The analysis of the obtained results shows that the model and the calculation methodologies followed in this work can be effectively applied in the dimensioning process of industrial glass tanks or to optimize existing plants.</div></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"181 \",\"pages\":\"Article 105025\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301932224003021\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224003021","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Simulation and modelling approach for bubblers effect into molten glass tank
The usage of air bubblers plays an important role in the glass-making industrial process because it enhances the global heat transfer efficiency and especially the uniformity and quality of the finished products. However, glass manufacturers rely on field practice to run their plants, due to the extreme difficulty of conducting experimental investigations in melting tanks. CFD analysis represents a powerful tool to optimize operating parameters and positioning of bubblers and other components, not only in existing plants, but also in the design of new furnaces.
In the present paper, the behaviour of bubble columns in highly viscous liquids at high temperature was analysed using the Eulerian multiphase model. The macroscopic effect of the column on the surrounding fluid was translated in a locally momentum source term that was introduced in the single-phase CFD model developed in this study. This solution approximates the multiphase nature of the problem in a reliable way and it is of fast integration in comprehensive models of furnaces.
A clear methodology to determine the diameter of the bubbles and the velocity of the bubble chain in the buoyancy source term calculus are presented and analysed in detail. In addition, a validation process based on the comparison with other theoretical and empirical studies on the subject was carried out in detail: it includes the evaluation of the bubble chains properties and effects by varying the liquid viscosity and the inlet gas flow, that is the real operational parameter in industry. Moreover, the effects of the variable height of the bubblers were investigated using the results of a single-phase model of a real industrial glass tank.
The analysis of the obtained results shows that the model and the calculation methodologies followed in this work can be effectively applied in the dimensioning process of industrial glass tanks or to optimize existing plants.
期刊介绍:
The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others.
The journal publishes full papers, brief communications and conference announcements.