{"title":"在基于性能的消防安全设计中采用基于航点的能见度方法","authors":"","doi":"10.1016/j.firesaf.2024.104269","DOIUrl":null,"url":null,"abstract":"<div><div>In performance based fire safety design, ensuring safe egress, e.g. by visibility of safety signs, is a crucial safety goal. Compliance with the building requirements is often demonstrated by simulations of smoke spread. Numerical models like the Fire Dynamics Simulator generally compute visibility as a local quantity using the light extinction coefficient, without the consideration of the actual light path to a safety sign. Here, visibility maps are introduced, providing an approach for post-processing fire simulation data. They indicate safe areas along egress routes, with respect to visibility. At each location, the available visibility is calculated using Jin’s empirical relation, as an integrated value of the extinction coefficient along the line of sight to the closest exit sign. The required visibility results from the distance between those points. Additional parameters like view angle or visual obstructions are considered. The presented method allows for temporal visibility assessment, e.g. in an ASET-RSET analysis.</div></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A waypoint based approach to visibility in performance based fire safety design\",\"authors\":\"\",\"doi\":\"10.1016/j.firesaf.2024.104269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In performance based fire safety design, ensuring safe egress, e.g. by visibility of safety signs, is a crucial safety goal. Compliance with the building requirements is often demonstrated by simulations of smoke spread. Numerical models like the Fire Dynamics Simulator generally compute visibility as a local quantity using the light extinction coefficient, without the consideration of the actual light path to a safety sign. Here, visibility maps are introduced, providing an approach for post-processing fire simulation data. They indicate safe areas along egress routes, with respect to visibility. At each location, the available visibility is calculated using Jin’s empirical relation, as an integrated value of the extinction coefficient along the line of sight to the closest exit sign. The required visibility results from the distance between those points. Additional parameters like view angle or visual obstructions are considered. The presented method allows for temporal visibility assessment, e.g. in an ASET-RSET analysis.</div></div>\",\"PeriodicalId\":50445,\"journal\":{\"name\":\"Fire Safety Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Safety Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379711224001826\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711224001826","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A waypoint based approach to visibility in performance based fire safety design
In performance based fire safety design, ensuring safe egress, e.g. by visibility of safety signs, is a crucial safety goal. Compliance with the building requirements is often demonstrated by simulations of smoke spread. Numerical models like the Fire Dynamics Simulator generally compute visibility as a local quantity using the light extinction coefficient, without the consideration of the actual light path to a safety sign. Here, visibility maps are introduced, providing an approach for post-processing fire simulation data. They indicate safe areas along egress routes, with respect to visibility. At each location, the available visibility is calculated using Jin’s empirical relation, as an integrated value of the extinction coefficient along the line of sight to the closest exit sign. The required visibility results from the distance between those points. Additional parameters like view angle or visual obstructions are considered. The presented method allows for temporal visibility assessment, e.g. in an ASET-RSET analysis.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.