Rachel L. Winston , Mark Schwarzländer , Hariet L. Hinz , Julia Rushton , Paul D. Pratt
{"title":"美国西部优先发展生物防治杂草:生物防治目标选择系统的调整结果","authors":"Rachel L. Winston , Mark Schwarzländer , Hariet L. Hinz , Julia Rushton , Paul D. Pratt","doi":"10.1016/j.biocontrol.2024.105634","DOIUrl":null,"url":null,"abstract":"<div><div>Nonnative invasive plants (weeds) negatively impact native ecosystems, and their effects are likely to increase with continuing global trade. Biological weed control has been employed as a cost-effective and sustainable management option for weeds in the USA since 1902. Biological control programs require careful prioritization of target weeds to ensure the most appropriate targets are selected to obtain the greatest beneficial outcomes with available resources. The Biological Control Target Selection (BCTS) system was developed by researchers in South Africa as an objective, transparent approach to prioritizing new weed biological control targets. The BCTS system was recently modified and applied to 295 state-regulated weeds in the western USA for which no biological control agents have yet been released. This paper presents the results of that application, identifying the most suitable candidates for new biological control programs as well as problematic weeds for which the likelihood of successful biological control is low.</div><div>Top-ranked species in the western USA are biennial or perennial weeds that occur in stable habitats, are established in more than one state, have traits deemed difficult to control with conventional methods, have large negative impacts and no conflicts of interest outside of the horticultural industry, and have substantial information available on potential biocontrol agents. Fifteen of the 20 top-ranked species are already targets of ongoing biological control programs in the USA. When species with current programs are excluded from the analysis, the next 20 top-ranked species largely differ by having less information available on potential biological control agents and having native or economically important congeners in the USA. Results from this framework provide valuable insights to the prioritization of current and future biocontrol research programs in the western USA.</div></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"198 ","pages":"Article 105634"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prioritizing weeds for biological control development in the western USA: Results from the adaptation of the biological control target selection system\",\"authors\":\"Rachel L. Winston , Mark Schwarzländer , Hariet L. Hinz , Julia Rushton , Paul D. Pratt\",\"doi\":\"10.1016/j.biocontrol.2024.105634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nonnative invasive plants (weeds) negatively impact native ecosystems, and their effects are likely to increase with continuing global trade. Biological weed control has been employed as a cost-effective and sustainable management option for weeds in the USA since 1902. Biological control programs require careful prioritization of target weeds to ensure the most appropriate targets are selected to obtain the greatest beneficial outcomes with available resources. The Biological Control Target Selection (BCTS) system was developed by researchers in South Africa as an objective, transparent approach to prioritizing new weed biological control targets. The BCTS system was recently modified and applied to 295 state-regulated weeds in the western USA for which no biological control agents have yet been released. This paper presents the results of that application, identifying the most suitable candidates for new biological control programs as well as problematic weeds for which the likelihood of successful biological control is low.</div><div>Top-ranked species in the western USA are biennial or perennial weeds that occur in stable habitats, are established in more than one state, have traits deemed difficult to control with conventional methods, have large negative impacts and no conflicts of interest outside of the horticultural industry, and have substantial information available on potential biocontrol agents. Fifteen of the 20 top-ranked species are already targets of ongoing biological control programs in the USA. When species with current programs are excluded from the analysis, the next 20 top-ranked species largely differ by having less information available on potential biological control agents and having native or economically important congeners in the USA. Results from this framework provide valuable insights to the prioritization of current and future biocontrol research programs in the western USA.</div></div>\",\"PeriodicalId\":8880,\"journal\":{\"name\":\"Biological Control\",\"volume\":\"198 \",\"pages\":\"Article 105634\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Control\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1049964424001993\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Control","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049964424001993","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Prioritizing weeds for biological control development in the western USA: Results from the adaptation of the biological control target selection system
Nonnative invasive plants (weeds) negatively impact native ecosystems, and their effects are likely to increase with continuing global trade. Biological weed control has been employed as a cost-effective and sustainable management option for weeds in the USA since 1902. Biological control programs require careful prioritization of target weeds to ensure the most appropriate targets are selected to obtain the greatest beneficial outcomes with available resources. The Biological Control Target Selection (BCTS) system was developed by researchers in South Africa as an objective, transparent approach to prioritizing new weed biological control targets. The BCTS system was recently modified and applied to 295 state-regulated weeds in the western USA for which no biological control agents have yet been released. This paper presents the results of that application, identifying the most suitable candidates for new biological control programs as well as problematic weeds for which the likelihood of successful biological control is low.
Top-ranked species in the western USA are biennial or perennial weeds that occur in stable habitats, are established in more than one state, have traits deemed difficult to control with conventional methods, have large negative impacts and no conflicts of interest outside of the horticultural industry, and have substantial information available on potential biocontrol agents. Fifteen of the 20 top-ranked species are already targets of ongoing biological control programs in the USA. When species with current programs are excluded from the analysis, the next 20 top-ranked species largely differ by having less information available on potential biological control agents and having native or economically important congeners in the USA. Results from this framework provide valuable insights to the prioritization of current and future biocontrol research programs in the western USA.
期刊介绍:
Biological control is an environmentally sound and effective means of reducing or mitigating pests and pest effects through the use of natural enemies. The aim of Biological Control is to promote this science and technology through publication of original research articles and reviews of research and theory. The journal devotes a section to reports on biotechnologies dealing with the elucidation and use of genes or gene products for the enhancement of biological control agents.
The journal encompasses biological control of viral, microbial, nematode, insect, mite, weed, and vertebrate pests in agriculture, aquatic, forest, natural resource, stored product, and urban environments. Biological control of arthropod pests of human and domestic animals is also included. Ecological, molecular, and biotechnological approaches to the understanding of biological control are welcome.