Yibo Zhou , Xiaohui Wang , Keming Chen , Chaoyue Han , Hongpu Guan , Yan Wang , Yanru Zhao
{"title":"太赫兹光谱和成像技术用于苹果溃疡病检测的可行性和潜力:初步调查","authors":"Yibo Zhou , Xiaohui Wang , Keming Chen , Chaoyue Han , Hongpu Guan , Yan Wang , Yanru Zhao","doi":"10.1016/j.saa.2024.125308","DOIUrl":null,"url":null,"abstract":"<div><div>Apple Valsa canker (AVC) caused by the Ascomycete <em>Valsa mali</em>, seriously constrains the production and quality of apple fruits. The symptomless incubation characteristics of <em>Valsa mali</em> make it highly challenging to detect AVC at an early infection stage. After infecting the wound of apple bark, the pathogenic hyphae of AVC will expand and colonize the phloem tissue. Meanwhile, various enzymes and toxic substances released by hyphae cause the decomposition of cellulose and lignin, and the generation of poisonous secondary metabolites in bark tissue. However, these early symptoms of AVC are invisible from the bark’s appearance. Fortunately, Terahertz Spectral Imaging (ThzSI) technology with the advantage of penetrating, and fingerprinting is promising for detecting hidden or slight symptoms of the fungal infection. This study is a preliminary investigation of terahertz frequency-domain spectra for AVC in the early stage of infection. Healthy and two-week-infected apple tree branches were prepared for capturing ThzS images, and the spectral data were preprocessed by Multivariate scattering correction (MSC), Savitzky-Golay convolution smoothing (SG), and standard normal variate (SNV) respectively to remove data noise and improve data quality. Principal component analysis (PCA), competitive adaptive reweighted sampling (CARS), and random frog (RFROG) were employed to extract the spectral feature bands to eliminate redundant data and improve computational efficiency. Machine learning models were established based on the spectral features to detect AVC at an early infection stage, where 11 of them exhibited the best performance with F1-score of 99.72%. To further explore disease information in spatial spectra, imaging data were acquired using terahertz imaging technology. Based on imaging data, pseudo-color imaging, histogram equalization, and Otsu segmentation were employed to visualize early infection areas in apple barks. Furthermore, histogram feature (HF), shape feature (SF), and local binary pattern (LBP) extracted from terahertz spectral images were utilized to establish the SVM, RF, and KNN models. HF-SF-KNN and HF-SF-LBP-KNN with the best performance achieved F1-score of 98.82%. This study presents a preliminary application of terahertz spectral and imaging technology for early-stage AVC detection and demonstrates its feasibility. Additionally, it provides a new way to detect AVC, which expands the application of ThzSI technology in tree disease detection in orchards and lays the foundation for further research.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"327 ","pages":"Article 125308"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility and potential of terahertz spectral and imaging technology for Apple Valsa canker detection: A preliminary investigation\",\"authors\":\"Yibo Zhou , Xiaohui Wang , Keming Chen , Chaoyue Han , Hongpu Guan , Yan Wang , Yanru Zhao\",\"doi\":\"10.1016/j.saa.2024.125308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Apple Valsa canker (AVC) caused by the Ascomycete <em>Valsa mali</em>, seriously constrains the production and quality of apple fruits. The symptomless incubation characteristics of <em>Valsa mali</em> make it highly challenging to detect AVC at an early infection stage. After infecting the wound of apple bark, the pathogenic hyphae of AVC will expand and colonize the phloem tissue. Meanwhile, various enzymes and toxic substances released by hyphae cause the decomposition of cellulose and lignin, and the generation of poisonous secondary metabolites in bark tissue. However, these early symptoms of AVC are invisible from the bark’s appearance. Fortunately, Terahertz Spectral Imaging (ThzSI) technology with the advantage of penetrating, and fingerprinting is promising for detecting hidden or slight symptoms of the fungal infection. This study is a preliminary investigation of terahertz frequency-domain spectra for AVC in the early stage of infection. Healthy and two-week-infected apple tree branches were prepared for capturing ThzS images, and the spectral data were preprocessed by Multivariate scattering correction (MSC), Savitzky-Golay convolution smoothing (SG), and standard normal variate (SNV) respectively to remove data noise and improve data quality. Principal component analysis (PCA), competitive adaptive reweighted sampling (CARS), and random frog (RFROG) were employed to extract the spectral feature bands to eliminate redundant data and improve computational efficiency. Machine learning models were established based on the spectral features to detect AVC at an early infection stage, where 11 of them exhibited the best performance with F1-score of 99.72%. To further explore disease information in spatial spectra, imaging data were acquired using terahertz imaging technology. Based on imaging data, pseudo-color imaging, histogram equalization, and Otsu segmentation were employed to visualize early infection areas in apple barks. Furthermore, histogram feature (HF), shape feature (SF), and local binary pattern (LBP) extracted from terahertz spectral images were utilized to establish the SVM, RF, and KNN models. HF-SF-KNN and HF-SF-LBP-KNN with the best performance achieved F1-score of 98.82%. This study presents a preliminary application of terahertz spectral and imaging technology for early-stage AVC detection and demonstrates its feasibility. Additionally, it provides a new way to detect AVC, which expands the application of ThzSI technology in tree disease detection in orchards and lays the foundation for further research.</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":\"327 \",\"pages\":\"Article 125308\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386142524014744\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524014744","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Feasibility and potential of terahertz spectral and imaging technology for Apple Valsa canker detection: A preliminary investigation
Apple Valsa canker (AVC) caused by the Ascomycete Valsa mali, seriously constrains the production and quality of apple fruits. The symptomless incubation characteristics of Valsa mali make it highly challenging to detect AVC at an early infection stage. After infecting the wound of apple bark, the pathogenic hyphae of AVC will expand and colonize the phloem tissue. Meanwhile, various enzymes and toxic substances released by hyphae cause the decomposition of cellulose and lignin, and the generation of poisonous secondary metabolites in bark tissue. However, these early symptoms of AVC are invisible from the bark’s appearance. Fortunately, Terahertz Spectral Imaging (ThzSI) technology with the advantage of penetrating, and fingerprinting is promising for detecting hidden or slight symptoms of the fungal infection. This study is a preliminary investigation of terahertz frequency-domain spectra for AVC in the early stage of infection. Healthy and two-week-infected apple tree branches were prepared for capturing ThzS images, and the spectral data were preprocessed by Multivariate scattering correction (MSC), Savitzky-Golay convolution smoothing (SG), and standard normal variate (SNV) respectively to remove data noise and improve data quality. Principal component analysis (PCA), competitive adaptive reweighted sampling (CARS), and random frog (RFROG) were employed to extract the spectral feature bands to eliminate redundant data and improve computational efficiency. Machine learning models were established based on the spectral features to detect AVC at an early infection stage, where 11 of them exhibited the best performance with F1-score of 99.72%. To further explore disease information in spatial spectra, imaging data were acquired using terahertz imaging technology. Based on imaging data, pseudo-color imaging, histogram equalization, and Otsu segmentation were employed to visualize early infection areas in apple barks. Furthermore, histogram feature (HF), shape feature (SF), and local binary pattern (LBP) extracted from terahertz spectral images were utilized to establish the SVM, RF, and KNN models. HF-SF-KNN and HF-SF-LBP-KNN with the best performance achieved F1-score of 98.82%. This study presents a preliminary application of terahertz spectral and imaging technology for early-stage AVC detection and demonstrates its feasibility. Additionally, it provides a new way to detect AVC, which expands the application of ThzSI technology in tree disease detection in orchards and lays the foundation for further research.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.