Sajed Amjadi , Hadi Almasi , Hamed Hamishehkar , Morteza Kashaninejad , Ali Ehsani , Shirin Jalili
{"title":"维生素 D3 和螺旋藻蛋白水解物共载纳米脂质体及酪蛋白酸钠包衣的开发","authors":"Sajed Amjadi , Hadi Almasi , Hamed Hamishehkar , Morteza Kashaninejad , Ali Ehsani , Shirin Jalili","doi":"10.1016/j.foostr.2024.100399","DOIUrl":null,"url":null,"abstract":"<div><div>The objective of this study was to investigate the co-loading of vitamin D<sub>3</sub> (VitD<sub>3</sub>) and <em>Spirulina platensis</em> protein hydrolysates (SPH) within coated nanoliposomes (NLPs) by sodium caseinate, with the intention of developing a novel nutritional supplement. The coated NLPs exhibited particle size, PDI, and zeta potential values of 185.30 ± 29.62 nm, 0.22±0.04, and +18.70 ± 3.44 mV, respectively. Moreover, the encapsulation efficiencies of the coated NLPs for VitD<sub>3</sub> and SPH were 83.24 ± 4.22 % and 89.41 ± 4.36 %, respectively. The improving effect of the surface coating by sodium caseinate on the stability and function of the NLPs was exhibited through analysis of chemical structure, thermal stability, and crystalline structure. The transmission electron microscopy pictures of the developed NLPs revealed a spherical morphology with a thin layer around the vesicle. The loaded VitD<sub>3</sub> and SPH in the coated NLPs showed controlled release profiles during incubation in the simulated gastrointestinal condition. Moreover, the VitD<sub>3</sub>/SPH co-loaded NLPs and their coated form had no considerable cell toxicity. To conclude, the developed nanosystem demonstrated the suitable characteristics of a nanocarrier for reaping the nutritional benefits of VitD<sub>3</sub> and SPH.</div></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"42 ","pages":"Article 100399"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of vitamin D3 and Spirulina platensis protein hydrolysates co-loaded nanoliposomes and coated by sodium caseinate\",\"authors\":\"Sajed Amjadi , Hadi Almasi , Hamed Hamishehkar , Morteza Kashaninejad , Ali Ehsani , Shirin Jalili\",\"doi\":\"10.1016/j.foostr.2024.100399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The objective of this study was to investigate the co-loading of vitamin D<sub>3</sub> (VitD<sub>3</sub>) and <em>Spirulina platensis</em> protein hydrolysates (SPH) within coated nanoliposomes (NLPs) by sodium caseinate, with the intention of developing a novel nutritional supplement. The coated NLPs exhibited particle size, PDI, and zeta potential values of 185.30 ± 29.62 nm, 0.22±0.04, and +18.70 ± 3.44 mV, respectively. Moreover, the encapsulation efficiencies of the coated NLPs for VitD<sub>3</sub> and SPH were 83.24 ± 4.22 % and 89.41 ± 4.36 %, respectively. The improving effect of the surface coating by sodium caseinate on the stability and function of the NLPs was exhibited through analysis of chemical structure, thermal stability, and crystalline structure. The transmission electron microscopy pictures of the developed NLPs revealed a spherical morphology with a thin layer around the vesicle. The loaded VitD<sub>3</sub> and SPH in the coated NLPs showed controlled release profiles during incubation in the simulated gastrointestinal condition. Moreover, the VitD<sub>3</sub>/SPH co-loaded NLPs and their coated form had no considerable cell toxicity. To conclude, the developed nanosystem demonstrated the suitable characteristics of a nanocarrier for reaping the nutritional benefits of VitD<sub>3</sub> and SPH.</div></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"42 \",\"pages\":\"Article 100399\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213329124000352\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329124000352","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Development of vitamin D3 and Spirulina platensis protein hydrolysates co-loaded nanoliposomes and coated by sodium caseinate
The objective of this study was to investigate the co-loading of vitamin D3 (VitD3) and Spirulina platensis protein hydrolysates (SPH) within coated nanoliposomes (NLPs) by sodium caseinate, with the intention of developing a novel nutritional supplement. The coated NLPs exhibited particle size, PDI, and zeta potential values of 185.30 ± 29.62 nm, 0.22±0.04, and +18.70 ± 3.44 mV, respectively. Moreover, the encapsulation efficiencies of the coated NLPs for VitD3 and SPH were 83.24 ± 4.22 % and 89.41 ± 4.36 %, respectively. The improving effect of the surface coating by sodium caseinate on the stability and function of the NLPs was exhibited through analysis of chemical structure, thermal stability, and crystalline structure. The transmission electron microscopy pictures of the developed NLPs revealed a spherical morphology with a thin layer around the vesicle. The loaded VitD3 and SPH in the coated NLPs showed controlled release profiles during incubation in the simulated gastrointestinal condition. Moreover, the VitD3/SPH co-loaded NLPs and their coated form had no considerable cell toxicity. To conclude, the developed nanosystem demonstrated the suitable characteristics of a nanocarrier for reaping the nutritional benefits of VitD3 and SPH.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.