用于水库性能分析的大型语言模型的构建和初步应用

IF 7 Q1 ENERGY & FUELS
Huanquan PAN , Jianqiao LIU , Bin GONG , Yiheng ZHU , Junhui BAI , Hu HUANG , Zhengbao FANG , Hongbin JING , Chen LIU , Tie KUANG , Yubo LAN , Tianzhi WANG , Tian XIE , Mingzhe CHENG , Bin QIN , Yujiang SHEN
{"title":"用于水库性能分析的大型语言模型的构建和初步应用","authors":"Huanquan PAN ,&nbsp;Jianqiao LIU ,&nbsp;Bin GONG ,&nbsp;Yiheng ZHU ,&nbsp;Junhui BAI ,&nbsp;Hu HUANG ,&nbsp;Zhengbao FANG ,&nbsp;Hongbin JING ,&nbsp;Chen LIU ,&nbsp;Tie KUANG ,&nbsp;Yubo LAN ,&nbsp;Tianzhi WANG ,&nbsp;Tian XIE ,&nbsp;Mingzhe CHENG ,&nbsp;Bin QIN ,&nbsp;Yujiang SHEN","doi":"10.1016/S1876-3804(25)60546-5","DOIUrl":null,"url":null,"abstract":"<div><div>A large language model (LLM) is constructed to address the sophisticated demands of data retrieval and analysis, detailed well profiling, computation of key technical indicators, and the solutions to complex problems in reservoir performance analysis (RPA). The LLM is constructed for RPA scenarios with incremental pre-training, fine-tuning, and functional subsystems coupling. Functional subsystem and efficient coupling methods are proposed based on named entity recognition (NER), tool invocation, and Text-to-SQL construction, all aimed at resolving pivotal challenges in developing the specific application of LLMs for RDA. This study conducted a detailed accuracy test on feature extraction models, tool classification models, data retrieval models and analysis recommendation models. The results indicate that these models have demonstrated good performance in various key aspects of reservoir dynamic analysis. The research takes some injection and production well groups in the PK3 Block of the Daqing Oilfield as an example for testing. Testing results show that our model has significant potential and practical value in assisting reservoir engineers with RDA. The research results provide a powerful support to the application of LLM in reservoir performance analysis.</div></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 5","pages":"Pages 1357-1366"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and preliminary application of large language model for reservoir performance analysis\",\"authors\":\"Huanquan PAN ,&nbsp;Jianqiao LIU ,&nbsp;Bin GONG ,&nbsp;Yiheng ZHU ,&nbsp;Junhui BAI ,&nbsp;Hu HUANG ,&nbsp;Zhengbao FANG ,&nbsp;Hongbin JING ,&nbsp;Chen LIU ,&nbsp;Tie KUANG ,&nbsp;Yubo LAN ,&nbsp;Tianzhi WANG ,&nbsp;Tian XIE ,&nbsp;Mingzhe CHENG ,&nbsp;Bin QIN ,&nbsp;Yujiang SHEN\",\"doi\":\"10.1016/S1876-3804(25)60546-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A large language model (LLM) is constructed to address the sophisticated demands of data retrieval and analysis, detailed well profiling, computation of key technical indicators, and the solutions to complex problems in reservoir performance analysis (RPA). The LLM is constructed for RPA scenarios with incremental pre-training, fine-tuning, and functional subsystems coupling. Functional subsystem and efficient coupling methods are proposed based on named entity recognition (NER), tool invocation, and Text-to-SQL construction, all aimed at resolving pivotal challenges in developing the specific application of LLMs for RDA. This study conducted a detailed accuracy test on feature extraction models, tool classification models, data retrieval models and analysis recommendation models. The results indicate that these models have demonstrated good performance in various key aspects of reservoir dynamic analysis. The research takes some injection and production well groups in the PK3 Block of the Daqing Oilfield as an example for testing. Testing results show that our model has significant potential and practical value in assisting reservoir engineers with RDA. The research results provide a powerful support to the application of LLM in reservoir performance analysis.</div></div>\",\"PeriodicalId\":67426,\"journal\":{\"name\":\"Petroleum Exploration and Development\",\"volume\":\"51 5\",\"pages\":\"Pages 1357-1366\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Exploration and Development\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876380425605465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380425605465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

构建大型语言模型(LLM)是为了满足油藏性能分析(RPA)中数据检索和分析、详细油井剖面、关键技术指标计算以及复杂问题解决方案的复杂需求。LLM 是针对 RPA 场景构建的,具有增量预培训、微调和功能子系统耦合功能。在命名实体识别(NER)、工具调用和文本到 SQL 构建的基础上,提出了功能子系统和高效耦合方法,这些方法都旨在解决开发 RDA LLM 具体应用的关键挑战。本研究对特征提取模型、工具分类模型、数据检索模型和分析推荐模型进行了详细的准确性测试。结果表明,这些模型在储层动态分析的各个关键方面都表现出了良好的性能。研究以大庆油田 PK3 区块的部分注采井组为例进行测试。测试结果表明,我们的模型在协助油藏工程师进行 RDA 方面具有巨大的潜力和实用价值。研究成果为 LLM 在油藏性能分析中的应用提供了有力支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction and preliminary application of large language model for reservoir performance analysis
A large language model (LLM) is constructed to address the sophisticated demands of data retrieval and analysis, detailed well profiling, computation of key technical indicators, and the solutions to complex problems in reservoir performance analysis (RPA). The LLM is constructed for RPA scenarios with incremental pre-training, fine-tuning, and functional subsystems coupling. Functional subsystem and efficient coupling methods are proposed based on named entity recognition (NER), tool invocation, and Text-to-SQL construction, all aimed at resolving pivotal challenges in developing the specific application of LLMs for RDA. This study conducted a detailed accuracy test on feature extraction models, tool classification models, data retrieval models and analysis recommendation models. The results indicate that these models have demonstrated good performance in various key aspects of reservoir dynamic analysis. The research takes some injection and production well groups in the PK3 Block of the Daqing Oilfield as an example for testing. Testing results show that our model has significant potential and practical value in assisting reservoir engineers with RDA. The research results provide a powerful support to the application of LLM in reservoir performance analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
473
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信