{"title":"利用 X 射线散射、电子显微镜和自动粒子计数技术量化 AA7050 中的纳米级沉淀","authors":"","doi":"10.1016/j.matchar.2024.114457","DOIUrl":null,"url":null,"abstract":"<div><div>Material strength is dependent on several factors, including precipitation strengthening, which is the main strengthening mechanism in AA7050 aluminum alloys. These alloys contain numerous nanometer-scale precipitates that occur throughout grains and along grain boundaries when subjected to a range of heat treatment conditions. In this study, three different characterization methods were used to characterize these nanoscale precipitates: conventional scanning transmission electron microscopy (STEM); laboratory-based small-angle X-ray scattering (SAXS); and a new software analysis tool developed by Thermo Fisher Scientific: automated particle workflow (APW). Each method was used to determine average precipitate size and volume fraction of precipitation in AA7050-T7451 specimens with variable post-T7 heat treatment procedures. STEM techniques measured the average particle size as ranging from 7.6 to 17.6 nm, compared to 6.3–10.7 nm for SAXS, and 7.4–10.8 nm for APW. Volume fraction determinations varied from 0.23 to 16 %, depending on method, and were the most difficult to quantify. Significant outcomes of the current study are that SAXS and APW are the most accurate methods for determining average particle size and that future work is needed to effectively analyze precipitate volume fraction.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification of nanoscale precipitation in AA7050 using X-ray scattering, electron microscopy and automated particle counting techniques\",\"authors\":\"\",\"doi\":\"10.1016/j.matchar.2024.114457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Material strength is dependent on several factors, including precipitation strengthening, which is the main strengthening mechanism in AA7050 aluminum alloys. These alloys contain numerous nanometer-scale precipitates that occur throughout grains and along grain boundaries when subjected to a range of heat treatment conditions. In this study, three different characterization methods were used to characterize these nanoscale precipitates: conventional scanning transmission electron microscopy (STEM); laboratory-based small-angle X-ray scattering (SAXS); and a new software analysis tool developed by Thermo Fisher Scientific: automated particle workflow (APW). Each method was used to determine average precipitate size and volume fraction of precipitation in AA7050-T7451 specimens with variable post-T7 heat treatment procedures. STEM techniques measured the average particle size as ranging from 7.6 to 17.6 nm, compared to 6.3–10.7 nm for SAXS, and 7.4–10.8 nm for APW. Volume fraction determinations varied from 0.23 to 16 %, depending on method, and were the most difficult to quantify. Significant outcomes of the current study are that SAXS and APW are the most accurate methods for determining average particle size and that future work is needed to effectively analyze precipitate volume fraction.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580324008386\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008386","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Quantification of nanoscale precipitation in AA7050 using X-ray scattering, electron microscopy and automated particle counting techniques
Material strength is dependent on several factors, including precipitation strengthening, which is the main strengthening mechanism in AA7050 aluminum alloys. These alloys contain numerous nanometer-scale precipitates that occur throughout grains and along grain boundaries when subjected to a range of heat treatment conditions. In this study, three different characterization methods were used to characterize these nanoscale precipitates: conventional scanning transmission electron microscopy (STEM); laboratory-based small-angle X-ray scattering (SAXS); and a new software analysis tool developed by Thermo Fisher Scientific: automated particle workflow (APW). Each method was used to determine average precipitate size and volume fraction of precipitation in AA7050-T7451 specimens with variable post-T7 heat treatment procedures. STEM techniques measured the average particle size as ranging from 7.6 to 17.6 nm, compared to 6.3–10.7 nm for SAXS, and 7.4–10.8 nm for APW. Volume fraction determinations varied from 0.23 to 16 %, depending on method, and were the most difficult to quantify. Significant outcomes of the current study are that SAXS and APW are the most accurate methods for determining average particle size and that future work is needed to effectively analyze precipitate volume fraction.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.