Ala Manohar , Thirukachhi Suvarna , S.V. Prabhakar Vattikuti , Hemanth P.K. Sudhani , Panchanathan Manivasagan , Eue-Soon Jang , Shoyebmohamad F. Shaikh , Ashok Kumar , Kuldeep Sharma , Naresh Mameda , Ki Hyeon Kim
{"title":"CeO2/CuFe2O4 纳米复合材料的综合研究:结构、EPR、磁性、电化学和细胞毒性特性","authors":"Ala Manohar , Thirukachhi Suvarna , S.V. Prabhakar Vattikuti , Hemanth P.K. Sudhani , Panchanathan Manivasagan , Eue-Soon Jang , Shoyebmohamad F. Shaikh , Ashok Kumar , Kuldeep Sharma , Naresh Mameda , Ki Hyeon Kim","doi":"10.1016/j.matchar.2024.114471","DOIUrl":null,"url":null,"abstract":"<div><div>This study dives into the successful synthesis of CeO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposites using the auto-combustion approach and elucidates their characteristics. The electrochemical analysis of samples calcination produced at 700 °C (CeO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub>) revealed good results, with a specific capacitance (Cs) of 123 F/g at a current density (CD) of 0.25 A g<sup>−1</sup> in a 1 M KOH solution. Significantly, these findings emphasize the established technique's potential for producing new, highly active, flexible, and environmentally friendly substrate materials appropriate for a variety of applications in supercapacitors. CeO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposites may be useful in biological and medicinal research. Despite their extensive use, little study has been conducted to investigate their possible impact on cell viability, in normal cell lines. The positive benefits of the CeO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposite structure were assessed using X-ray diffraction (XRD). To assess the impact of these nanocomposites, MTT cytotoxicity tests were performed on normal (mouse muscle fibroblast - BLO-11) cell lines. The results show that CeO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposites have a high potential for biomedical applications, as they had no harmful effects on the cell types evaluated. As a result, the structure of the material appears to be crucial in determining both electrochemical performance and cell longevity. This discovery is significant because it provides useful insights into the morphological engineering of electrodes for a variety of applications and influences future material development.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114471"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive study of CeO2/CuFe2O4 nanocomposites: Structural, EPR, magnetic, electrochemical, and cytotoxicity properties\",\"authors\":\"Ala Manohar , Thirukachhi Suvarna , S.V. Prabhakar Vattikuti , Hemanth P.K. Sudhani , Panchanathan Manivasagan , Eue-Soon Jang , Shoyebmohamad F. Shaikh , Ashok Kumar , Kuldeep Sharma , Naresh Mameda , Ki Hyeon Kim\",\"doi\":\"10.1016/j.matchar.2024.114471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study dives into the successful synthesis of CeO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposites using the auto-combustion approach and elucidates their characteristics. The electrochemical analysis of samples calcination produced at 700 °C (CeO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub>) revealed good results, with a specific capacitance (Cs) of 123 F/g at a current density (CD) of 0.25 A g<sup>−1</sup> in a 1 M KOH solution. Significantly, these findings emphasize the established technique's potential for producing new, highly active, flexible, and environmentally friendly substrate materials appropriate for a variety of applications in supercapacitors. CeO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposites may be useful in biological and medicinal research. Despite their extensive use, little study has been conducted to investigate their possible impact on cell viability, in normal cell lines. The positive benefits of the CeO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposite structure were assessed using X-ray diffraction (XRD). To assess the impact of these nanocomposites, MTT cytotoxicity tests were performed on normal (mouse muscle fibroblast - BLO-11) cell lines. The results show that CeO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposites have a high potential for biomedical applications, as they had no harmful effects on the cell types evaluated. As a result, the structure of the material appears to be crucial in determining both electrochemical performance and cell longevity. This discovery is significant because it provides useful insights into the morphological engineering of electrodes for a variety of applications and influences future material development.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"218 \",\"pages\":\"Article 114471\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580324008520\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008520","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
本研究利用自燃方法成功合成了 CeO2/CuFe2O4 纳米复合材料,并阐明了其特性。在 700 °C 下煅烧产生的样品(CeO2/CuFe2O4)的电化学分析结果显示效果良好,在 1 M KOH 溶液中,电流密度(CD)为 0.25 A g-1 时,比电容(Cs)为 123 F/g。重要的是,这些发现强调了这一成熟技术在生产新型、高活性、柔性和环保基底材料方面的潜力,适合超级电容器的各种应用。CeO2/CuFe2O4 纳米复合材料可用于生物和医药研究。尽管 CeO2/CuFe2O4 纳米复合材料被广泛使用,但很少有人研究它们对正常细胞系的细胞活力可能产生的影响。我们使用 X 射线衍射 (XRD) 评估了 CeO2/CuFe2O4 纳米复合材料结构的积极意义。为了评估这些纳米复合材料的影响,对正常细胞系(小鼠肌肉成纤维细胞 - BLO-11)进行了 MTT 细胞毒性测试。结果表明,CeO2/CuFe2O4 纳米复合材料具有很高的生物医学应用潜力,因为它们对所评估的细胞类型没有有害影响。因此,材料的结构似乎是决定电化学性能和细胞寿命的关键。这一发现意义重大,因为它为各种应用的电极形态工程提供了有用的见解,并影响了未来的材料开发。
Comprehensive study of CeO2/CuFe2O4 nanocomposites: Structural, EPR, magnetic, electrochemical, and cytotoxicity properties
This study dives into the successful synthesis of CeO2/CuFe2O4 nanocomposites using the auto-combustion approach and elucidates their characteristics. The electrochemical analysis of samples calcination produced at 700 °C (CeO2/CuFe2O4) revealed good results, with a specific capacitance (Cs) of 123 F/g at a current density (CD) of 0.25 A g−1 in a 1 M KOH solution. Significantly, these findings emphasize the established technique's potential for producing new, highly active, flexible, and environmentally friendly substrate materials appropriate for a variety of applications in supercapacitors. CeO2/CuFe2O4 nanocomposites may be useful in biological and medicinal research. Despite their extensive use, little study has been conducted to investigate their possible impact on cell viability, in normal cell lines. The positive benefits of the CeO2/CuFe2O4 nanocomposite structure were assessed using X-ray diffraction (XRD). To assess the impact of these nanocomposites, MTT cytotoxicity tests were performed on normal (mouse muscle fibroblast - BLO-11) cell lines. The results show that CeO2/CuFe2O4 nanocomposites have a high potential for biomedical applications, as they had no harmful effects on the cell types evaluated. As a result, the structure of the material appears to be crucial in determining both electrochemical performance and cell longevity. This discovery is significant because it provides useful insights into the morphological engineering of electrodes for a variety of applications and influences future material development.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.