通过计算建模解构自我控制中的情绪

IF 2.1 3区 心理学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Andriani Nikodemou, Chris Christodoulou
{"title":"通过计算建模解构自我控制中的情绪","authors":"Andriani Nikodemou,&nbsp;Chris Christodoulou","doi":"10.1016/j.cogsys.2024.101294","DOIUrl":null,"url":null,"abstract":"<div><div>Positive and negative emotions have a determining role in self-control, a vital aspect of human decision-making, defined as the dilemma between a smaller sooner reward and a larger later reward. Self-control, as an internal conflict between the higher (pre-frontal cortex) and the lower (limbic system) parts of the brain, has already been simulated using the Iterated Prisoner’s Dilemma game with learning in a computational model. However, the concept of emotions, defined as states elicited by positive and negative reinforcers, is absent from the existing self-control model. By increasing and decreasing the values of the reinforcement signals in the Prisoner’s Dilemma payoff matrix in-between the rounds, we simulated the increment or decrement of positive or negative emotions’ intensity and thus the effects of the presence of emotions, rather than the emotions per se. Our results reflect the restorative role of positive emotions on self-control, the necessity of negative emotions for successful self-control and the impairment of self-control due to intense negative emotions. Furthermore, our results reveal the importance of parameters in self-regulation, such as the intensity of emotions and the frequency it changes. In conclusion, we incorporated the effect of emotions in a computational model of self-control, and with our results complying with cognitive science literature, we demonstrated the cognitive adequacy of our model. We anticipate in this way to provide novel approaches for comprehending self-control behaviour, and to contribute to the general attempt of modeling human behaviour.</div></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"88 ","pages":"Article 101294"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deconstructing emotions in self-control through computational modeling\",\"authors\":\"Andriani Nikodemou,&nbsp;Chris Christodoulou\",\"doi\":\"10.1016/j.cogsys.2024.101294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Positive and negative emotions have a determining role in self-control, a vital aspect of human decision-making, defined as the dilemma between a smaller sooner reward and a larger later reward. Self-control, as an internal conflict between the higher (pre-frontal cortex) and the lower (limbic system) parts of the brain, has already been simulated using the Iterated Prisoner’s Dilemma game with learning in a computational model. However, the concept of emotions, defined as states elicited by positive and negative reinforcers, is absent from the existing self-control model. By increasing and decreasing the values of the reinforcement signals in the Prisoner’s Dilemma payoff matrix in-between the rounds, we simulated the increment or decrement of positive or negative emotions’ intensity and thus the effects of the presence of emotions, rather than the emotions per se. Our results reflect the restorative role of positive emotions on self-control, the necessity of negative emotions for successful self-control and the impairment of self-control due to intense negative emotions. Furthermore, our results reveal the importance of parameters in self-regulation, such as the intensity of emotions and the frequency it changes. In conclusion, we incorporated the effect of emotions in a computational model of self-control, and with our results complying with cognitive science literature, we demonstrated the cognitive adequacy of our model. We anticipate in this way to provide novel approaches for comprehending self-control behaviour, and to contribute to the general attempt of modeling human behaviour.</div></div>\",\"PeriodicalId\":55242,\"journal\":{\"name\":\"Cognitive Systems Research\",\"volume\":\"88 \",\"pages\":\"Article 101294\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Systems Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389041724000883\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000883","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

积极情绪和消极情绪对自我控制起着决定性作用,而自我控制是人类决策的一个重要方面,被定义为在较小的早期回报和较大的后期回报之间的两难选择。自我控制是大脑高层(前额叶皮层)和低层(边缘系统)之间的内部冲突,已经有人利用迭代囚徒困境(Iterated Prisoner's Dilemma)游戏在计算模型中模拟了这种冲突。然而,现有的自我控制模型中并没有情绪的概念,情绪被定义为由正强化物和负强化物引起的状态。通过在两轮游戏之间增加或减少囚徒困境回报矩阵中的强化信号值,我们模拟了积极或消极情绪强度的增加或减少,从而模拟了情绪存在的影响,而不是情绪本身。我们的结果反映了积极情绪对自我控制的恢复作用、消极情绪对成功自我控制的必要性以及强烈消极情绪对自我控制的损害。此外,我们的结果还揭示了自我调节参数的重要性,如情绪的强度和变化频率。总之,我们将情绪的影响纳入了自我控制的计算模型中,我们的结果与认知科学文献相符,证明了我们的模型在认知上的充分性。我们希望通过这种方式为理解自我控制行为提供新的方法,并为人类行为建模的总体尝试做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deconstructing emotions in self-control through computational modeling
Positive and negative emotions have a determining role in self-control, a vital aspect of human decision-making, defined as the dilemma between a smaller sooner reward and a larger later reward. Self-control, as an internal conflict between the higher (pre-frontal cortex) and the lower (limbic system) parts of the brain, has already been simulated using the Iterated Prisoner’s Dilemma game with learning in a computational model. However, the concept of emotions, defined as states elicited by positive and negative reinforcers, is absent from the existing self-control model. By increasing and decreasing the values of the reinforcement signals in the Prisoner’s Dilemma payoff matrix in-between the rounds, we simulated the increment or decrement of positive or negative emotions’ intensity and thus the effects of the presence of emotions, rather than the emotions per se. Our results reflect the restorative role of positive emotions on self-control, the necessity of negative emotions for successful self-control and the impairment of self-control due to intense negative emotions. Furthermore, our results reveal the importance of parameters in self-regulation, such as the intensity of emotions and the frequency it changes. In conclusion, we incorporated the effect of emotions in a computational model of self-control, and with our results complying with cognitive science literature, we demonstrated the cognitive adequacy of our model. We anticipate in this way to provide novel approaches for comprehending self-control behaviour, and to contribute to the general attempt of modeling human behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Systems Research
Cognitive Systems Research 工程技术-计算机:人工智能
CiteScore
9.40
自引率
5.10%
发文量
40
审稿时长
>12 weeks
期刊介绍: Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial. The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition. Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信