{"title":"误信的新视角:感知控制的计算模型","authors":"Haokui Xu , Bohao Shi , Yiming Zhu , Jifan Zhou , Mowei Shen","doi":"10.1016/j.cogsys.2024.101305","DOIUrl":null,"url":null,"abstract":"<div><div>The discovery of various cognitive biases and social illusions indicates that people routinely have misbeliefs. Focusing on the illusion of control (IOC), this article argues that when time and cognitive resources are limited, and information is imperfect, misbeliefs can be generated naturally in a normal belief formation system, and these misbeliefs might help people adapt better to the environment.<!--> <!-->In this study, we present a computational model—the informativeness-weighting model (IWM)—describing how beliefs are revised by observed evidence. To be precise, IOC is the result of distinct types of evidence being endowed with different weights according to its informativeness in a belief revision process. To evaluate the model, we also designed two behavioral experiments to compare people’s sense of control with that predicted by the model.<!--> <!-->In both experiments, our model outperformed two alternative models in predicting and explaining the misestimation of people’s perceived control. Thus, we suggest that our model reflects an adaptive strategy for information processing, which helps to explain why misbeliefs, like IOC, are prevalent in human cognition.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new perspective on Misbeliefs: A computational model for perceived control\",\"authors\":\"Haokui Xu , Bohao Shi , Yiming Zhu , Jifan Zhou , Mowei Shen\",\"doi\":\"10.1016/j.cogsys.2024.101305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The discovery of various cognitive biases and social illusions indicates that people routinely have misbeliefs. Focusing on the illusion of control (IOC), this article argues that when time and cognitive resources are limited, and information is imperfect, misbeliefs can be generated naturally in a normal belief formation system, and these misbeliefs might help people adapt better to the environment.<!--> <!-->In this study, we present a computational model—the informativeness-weighting model (IWM)—describing how beliefs are revised by observed evidence. To be precise, IOC is the result of distinct types of evidence being endowed with different weights according to its informativeness in a belief revision process. To evaluate the model, we also designed two behavioral experiments to compare people’s sense of control with that predicted by the model.<!--> <!-->In both experiments, our model outperformed two alternative models in predicting and explaining the misestimation of people’s perceived control. Thus, we suggest that our model reflects an adaptive strategy for information processing, which helps to explain why misbeliefs, like IOC, are prevalent in human cognition.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389041724000998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A new perspective on Misbeliefs: A computational model for perceived control
The discovery of various cognitive biases and social illusions indicates that people routinely have misbeliefs. Focusing on the illusion of control (IOC), this article argues that when time and cognitive resources are limited, and information is imperfect, misbeliefs can be generated naturally in a normal belief formation system, and these misbeliefs might help people adapt better to the environment. In this study, we present a computational model—the informativeness-weighting model (IWM)—describing how beliefs are revised by observed evidence. To be precise, IOC is the result of distinct types of evidence being endowed with different weights according to its informativeness in a belief revision process. To evaluate the model, we also designed two behavioral experiments to compare people’s sense of control with that predicted by the model. In both experiments, our model outperformed two alternative models in predicting and explaining the misestimation of people’s perceived control. Thus, we suggest that our model reflects an adaptive strategy for information processing, which helps to explain why misbeliefs, like IOC, are prevalent in human cognition.