努力确定某些化学启发变分量子算法中是否存在贫瘠高原

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Rui Mao, Guojing Tian, Xiaoming Sun
{"title":"努力确定某些化学启发变分量子算法中是否存在贫瘠高原","authors":"Rui Mao, Guojing Tian, Xiaoming Sun","doi":"10.1038/s42005-024-01798-0","DOIUrl":null,"url":null,"abstract":"In quantum chemistry, the variational quantum eigensolver (VQE) is a promising algorithm for molecular simulations on near-term quantum computers. However, VQEs using hardware-efficient circuits face scaling challenges due to the barren plateau problem. This raises the question of whether chemically inspired circuits from unitary coupled cluster (UCC) methods can avoid this issue. Here we provide theoretical evidence indicating they may not. By examining alternated dUCC ansätzes and relaxed Trotterized UCC ansätzes, we find that in the infinite depth limit, a separation occurs between particle-hole one- and two-body unitary operators. While one-body terms yield a polynomially concentrated energy landscape, adding two-body terms leads to exponential concentration. Numerical simulations support these findings, suggesting that popular 1-step Trotterized unitary coupled-cluster with singles and doubles (UCCSD) ansätze may not scale. Our results emphasize the link between trainability and circuit expressiveness, raising doubts about VQEs’ ability to surpass classical methods. The variational quantum eigensolver (VQE) is a promising approach for molecular simulations on quantum computers but faces scaling issues due to the barren plateau problem. The authors’ findings indicate that unitary coupled cluster circuits may not overcome these challenges, raising doubts about VQE’s ability to outperform classical methods.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01798-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards determining the presence of barren plateaus in some chemically inspired variational quantum algorithms\",\"authors\":\"Rui Mao, Guojing Tian, Xiaoming Sun\",\"doi\":\"10.1038/s42005-024-01798-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In quantum chemistry, the variational quantum eigensolver (VQE) is a promising algorithm for molecular simulations on near-term quantum computers. However, VQEs using hardware-efficient circuits face scaling challenges due to the barren plateau problem. This raises the question of whether chemically inspired circuits from unitary coupled cluster (UCC) methods can avoid this issue. Here we provide theoretical evidence indicating they may not. By examining alternated dUCC ansätzes and relaxed Trotterized UCC ansätzes, we find that in the infinite depth limit, a separation occurs between particle-hole one- and two-body unitary operators. While one-body terms yield a polynomially concentrated energy landscape, adding two-body terms leads to exponential concentration. Numerical simulations support these findings, suggesting that popular 1-step Trotterized unitary coupled-cluster with singles and doubles (UCCSD) ansätze may not scale. Our results emphasize the link between trainability and circuit expressiveness, raising doubts about VQEs’ ability to surpass classical methods. The variational quantum eigensolver (VQE) is a promising approach for molecular simulations on quantum computers but faces scaling issues due to the barren plateau problem. The authors’ findings indicate that unitary coupled cluster circuits may not overcome these challenges, raising doubts about VQE’s ability to outperform classical methods.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01798-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01798-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01798-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在量子化学领域,变分量子等值分解器(VQE)是在近期量子计算机上进行分子模拟的一种很有前途的算法。然而,由于贫瘠高原问题,使用硬件高效电路的 VQE 面临着扩展挑战。这就提出了一个问题:来自单元耦合簇(UCC)方法的化学启发电路能否避免这一问题。我们在此提供的理论证据表明,它们可能无法避免这一问题。通过研究交替的 dUCC 答案和松弛的 Trotterized UCC 答案,我们发现在无限深度极限中,粒子-空穴一体和二体单元算子之间出现了分离。单体项产生多项式集中的能量景观,而添加双体项则导致指数级的集中。数值模拟支持这些发现,表明流行的一步特罗特化单体耦合簇与单体和双体(UCCSD)解析可能无法扩展。我们的研究结果强调了可训练性与电路表现力之间的联系,使人们对 VQE 超越经典方法的能力产生了怀疑。变分量子求解器(VQE)是在量子计算机上进行分子模拟的一种很有前途的方法,但由于贫瘠高原问题,它面临着扩展问题。作者的研究结果表明,单元耦合集群电路可能无法克服这些挑战,从而使人们对 VQE 超越经典方法的能力产生怀疑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Towards determining the presence of barren plateaus in some chemically inspired variational quantum algorithms

Towards determining the presence of barren plateaus in some chemically inspired variational quantum algorithms
In quantum chemistry, the variational quantum eigensolver (VQE) is a promising algorithm for molecular simulations on near-term quantum computers. However, VQEs using hardware-efficient circuits face scaling challenges due to the barren plateau problem. This raises the question of whether chemically inspired circuits from unitary coupled cluster (UCC) methods can avoid this issue. Here we provide theoretical evidence indicating they may not. By examining alternated dUCC ansätzes and relaxed Trotterized UCC ansätzes, we find that in the infinite depth limit, a separation occurs between particle-hole one- and two-body unitary operators. While one-body terms yield a polynomially concentrated energy landscape, adding two-body terms leads to exponential concentration. Numerical simulations support these findings, suggesting that popular 1-step Trotterized unitary coupled-cluster with singles and doubles (UCCSD) ansätze may not scale. Our results emphasize the link between trainability and circuit expressiveness, raising doubts about VQEs’ ability to surpass classical methods. The variational quantum eigensolver (VQE) is a promising approach for molecular simulations on quantum computers but faces scaling issues due to the barren plateau problem. The authors’ findings indicate that unitary coupled cluster circuits may not overcome these challenges, raising doubts about VQE’s ability to outperform classical methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信