Gang Yao, Xiaojian Hu, Pingfan Song, Taiyun Zhou, Yue Zhang, Ammar Yasir, Suizhi Luo
{"title":"AdaFNDFS:利用快速非支配特征选择的 AdaBoost 集合模型预测供应链中的企业信贷风险","authors":"Gang Yao, Xiaojian Hu, Pingfan Song, Taiyun Zhou, Yue Zhang, Ammar Yasir, Suizhi Luo","doi":"10.1155/2024/5529847","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Early warnings of enterprise credit risk based on supply chain scenarios are helpful for preventing enterprise credit deterioration and resolving systemic risk. Enterprise credit risk data in the supply chain are characterized by higher-dimension information and class imbalance. The class imbalance influences the feature selection effect, and the feature subset is closely related to the predictive performance of subsequent learning algorithms. Therefore, ensuring the adaptivity of feature selection and the subsequent class imbalance–oriented classification model is a key issue. We propose an AdaBoost ensemble model with fast nondominated feature selection (AdaFNDFS). AdaFNDFS uses the FNDFS method in the AdaBoost algorithm to iteratively select features and uses the classifier to evaluate the performance of feature subsets to train the class imbalance–oriented classifier and the best-matched feature subset, ensuring the adaptivity of feature selection and subsequent classifiers. The further use of the differential sampling rate (DSR) method enables AdaFNDFS to integrate more training models with different knowledge and to obtain higher accuracy and better generalization ability for prediction tasks facing high-dimensional information and class imbalance. A test using credit risk data from Chinese listed enterprises containing supply chain information demonstrates that the prediction scoring indicators, such as AUC, KS, AP, and accuracy, of the AdaFNDFS are better than those of basic models such as LR, LDA, DT, and SVM and multiple hybrid models that use SMOTE, feature selection, and ensemble methods. AdaFNDFS outperforms the basic models by at least 0.0073 (0.0344, 0.0349, and 0.0071) in terms of the AUC (KS, AP, and accuracy). AdaFNDFS has outstanding advantages in predicting enterprise credit risk in the supply chain and can support interested decision-makers.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5529847","citationCount":"0","resultStr":"{\"title\":\"AdaFNDFS: An AdaBoost Ensemble Model with Fast Nondominated Feature Selection for Predicting Enterprise Credit Risk in the Supply Chain\",\"authors\":\"Gang Yao, Xiaojian Hu, Pingfan Song, Taiyun Zhou, Yue Zhang, Ammar Yasir, Suizhi Luo\",\"doi\":\"10.1155/2024/5529847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Early warnings of enterprise credit risk based on supply chain scenarios are helpful for preventing enterprise credit deterioration and resolving systemic risk. Enterprise credit risk data in the supply chain are characterized by higher-dimension information and class imbalance. The class imbalance influences the feature selection effect, and the feature subset is closely related to the predictive performance of subsequent learning algorithms. Therefore, ensuring the adaptivity of feature selection and the subsequent class imbalance–oriented classification model is a key issue. We propose an AdaBoost ensemble model with fast nondominated feature selection (AdaFNDFS). AdaFNDFS uses the FNDFS method in the AdaBoost algorithm to iteratively select features and uses the classifier to evaluate the performance of feature subsets to train the class imbalance–oriented classifier and the best-matched feature subset, ensuring the adaptivity of feature selection and subsequent classifiers. The further use of the differential sampling rate (DSR) method enables AdaFNDFS to integrate more training models with different knowledge and to obtain higher accuracy and better generalization ability for prediction tasks facing high-dimensional information and class imbalance. A test using credit risk data from Chinese listed enterprises containing supply chain information demonstrates that the prediction scoring indicators, such as AUC, KS, AP, and accuracy, of the AdaFNDFS are better than those of basic models such as LR, LDA, DT, and SVM and multiple hybrid models that use SMOTE, feature selection, and ensemble methods. AdaFNDFS outperforms the basic models by at least 0.0073 (0.0344, 0.0349, and 0.0071) in terms of the AUC (KS, AP, and accuracy). AdaFNDFS has outstanding advantages in predicting enterprise credit risk in the supply chain and can support interested decision-makers.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5529847\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5529847\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5529847","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
AdaFNDFS: An AdaBoost Ensemble Model with Fast Nondominated Feature Selection for Predicting Enterprise Credit Risk in the Supply Chain
Early warnings of enterprise credit risk based on supply chain scenarios are helpful for preventing enterprise credit deterioration and resolving systemic risk. Enterprise credit risk data in the supply chain are characterized by higher-dimension information and class imbalance. The class imbalance influences the feature selection effect, and the feature subset is closely related to the predictive performance of subsequent learning algorithms. Therefore, ensuring the adaptivity of feature selection and the subsequent class imbalance–oriented classification model is a key issue. We propose an AdaBoost ensemble model with fast nondominated feature selection (AdaFNDFS). AdaFNDFS uses the FNDFS method in the AdaBoost algorithm to iteratively select features and uses the classifier to evaluate the performance of feature subsets to train the class imbalance–oriented classifier and the best-matched feature subset, ensuring the adaptivity of feature selection and subsequent classifiers. The further use of the differential sampling rate (DSR) method enables AdaFNDFS to integrate more training models with different knowledge and to obtain higher accuracy and better generalization ability for prediction tasks facing high-dimensional information and class imbalance. A test using credit risk data from Chinese listed enterprises containing supply chain information demonstrates that the prediction scoring indicators, such as AUC, KS, AP, and accuracy, of the AdaFNDFS are better than those of basic models such as LR, LDA, DT, and SVM and multiple hybrid models that use SMOTE, feature selection, and ensemble methods. AdaFNDFS outperforms the basic models by at least 0.0073 (0.0344, 0.0349, and 0.0071) in terms of the AUC (KS, AP, and accuracy). AdaFNDFS has outstanding advantages in predicting enterprise credit risk in the supply chain and can support interested decision-makers.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.