Zhang Jianning, Kong Weijun, Li Lifeng, Su Shuzheng, Huang Yao, Zhu Kui, Shi Guoji, Zhang Meidan
{"title":"基于 EDFM 的分段水力压裂水平页岩井自流产量预测","authors":"Zhang Jianning, Kong Weijun, Li Lifeng, Su Shuzheng, Huang Yao, Zhu Kui, Shi Guoji, Zhang Meidan","doi":"10.1155/2024/6875779","DOIUrl":null,"url":null,"abstract":"<p>Terrestrial shale oil resources in China are abundant. However, its development in China is still in the early stages. And its scale of transformation and production systems is still being explored. Currently, reservoir numerical simulation on shale oil reservoirs faces two main challenges: (1) multiscale flow of matrix–microfracture–hydraulic fractures in shale oil reservoirs and (2) bidirectional coupling of reservoir–wellbore–nozzle systems. This paper proposes a self-flow model for horizontal shale wells that describes multiscale fractures and production controlled by the nozzle. The model integrates the embedded discrete fracture model (EDFM), pipe flow model, and nozzle flow model. The accuracy of the model has been validated through comparisons with other reference models and field data. Then, this study analyzes the effects of different natural fracture densities, horizontal section lengths, number of fracturing stages, and nozzle diameters on the production capacity during the self-flow period. The results indicate that reservoirs with developed natural fractures can enhance the development efficiency during the self-flow period, and appropriate horizontal section lengths and fracturing stages contribute to achieving maximum economic benefits in development. Additionally, smaller nozzle diameters lead to longer self-flow periods and higher cumulative production. The research findings of this paper can be applied to simulate the production of hydraulic fractured horizontal shale wells.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2024 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6875779","citationCount":"0","resultStr":"{\"title\":\"Prediction of Self-Flow Production in Segmented Hydraulic Fractured Horizontal Shale Wells Based on EDFM\",\"authors\":\"Zhang Jianning, Kong Weijun, Li Lifeng, Su Shuzheng, Huang Yao, Zhu Kui, Shi Guoji, Zhang Meidan\",\"doi\":\"10.1155/2024/6875779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Terrestrial shale oil resources in China are abundant. However, its development in China is still in the early stages. And its scale of transformation and production systems is still being explored. Currently, reservoir numerical simulation on shale oil reservoirs faces two main challenges: (1) multiscale flow of matrix–microfracture–hydraulic fractures in shale oil reservoirs and (2) bidirectional coupling of reservoir–wellbore–nozzle systems. This paper proposes a self-flow model for horizontal shale wells that describes multiscale fractures and production controlled by the nozzle. The model integrates the embedded discrete fracture model (EDFM), pipe flow model, and nozzle flow model. The accuracy of the model has been validated through comparisons with other reference models and field data. Then, this study analyzes the effects of different natural fracture densities, horizontal section lengths, number of fracturing stages, and nozzle diameters on the production capacity during the self-flow period. The results indicate that reservoirs with developed natural fractures can enhance the development efficiency during the self-flow period, and appropriate horizontal section lengths and fracturing stages contribute to achieving maximum economic benefits in development. Additionally, smaller nozzle diameters lead to longer self-flow periods and higher cumulative production. The research findings of this paper can be applied to simulate the production of hydraulic fractured horizontal shale wells.</p>\",\"PeriodicalId\":12512,\"journal\":{\"name\":\"Geofluids\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6875779\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofluids\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6875779\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofluids","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6875779","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Prediction of Self-Flow Production in Segmented Hydraulic Fractured Horizontal Shale Wells Based on EDFM
Terrestrial shale oil resources in China are abundant. However, its development in China is still in the early stages. And its scale of transformation and production systems is still being explored. Currently, reservoir numerical simulation on shale oil reservoirs faces two main challenges: (1) multiscale flow of matrix–microfracture–hydraulic fractures in shale oil reservoirs and (2) bidirectional coupling of reservoir–wellbore–nozzle systems. This paper proposes a self-flow model for horizontal shale wells that describes multiscale fractures and production controlled by the nozzle. The model integrates the embedded discrete fracture model (EDFM), pipe flow model, and nozzle flow model. The accuracy of the model has been validated through comparisons with other reference models and field data. Then, this study analyzes the effects of different natural fracture densities, horizontal section lengths, number of fracturing stages, and nozzle diameters on the production capacity during the self-flow period. The results indicate that reservoirs with developed natural fractures can enhance the development efficiency during the self-flow period, and appropriate horizontal section lengths and fracturing stages contribute to achieving maximum economic benefits in development. Additionally, smaller nozzle diameters lead to longer self-flow periods and higher cumulative production. The research findings of this paper can be applied to simulate the production of hydraulic fractured horizontal shale wells.
期刊介绍:
Geofluids is a peer-reviewed, Open Access journal that provides a forum for original research and reviews relating to the role of fluids in mineralogical, chemical, and structural evolution of the Earth’s crust. Its explicit aim is to disseminate ideas across the range of sub-disciplines in which Geofluids research is carried out. To this end, authors are encouraged to stress the transdisciplinary relevance and international ramifications of their research. Authors are also encouraged to make their work as accessible as possible to readers from other sub-disciplines.
Geofluids emphasizes chemical, microbial, and physical aspects of subsurface fluids throughout the Earth’s crust. Geofluids spans studies of groundwater, terrestrial or submarine geothermal fluids, basinal brines, petroleum, metamorphic waters or magmatic fluids.