永冻土区温室气体预算表明二氧化碳吸收较弱,甲烷和一氧化二氮来源较多,但自上而下法和自下而上法得出的结果存在差异

IF 5.4 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES
G. Hugelius, J. Ramage, E. Burke, A. Chatterjee, T. L. Smallman, T. Aalto, A. Bastos, C. Biasi, J. G. Canadell, N. Chandra, F. Chevallier, P. Ciais, J. Chang, L. Feng, M. W. Jones, T. Kleinen, M. Kuhn, R. Lauerwald, J. Liu, E. López-Blanco, I. T. Luijkx, M. E. Marushchak, S. M. Natali, Y. Niwa, D. Olefeldt, P. I. Palmer, P. K. Patra, W. Peters, S. Potter, B. Poulter, B. M. Rogers, W. J. Riley, M. Saunois, E. A. G. Schuur, R. L. Thompson, C. Treat, A. Tsuruta, M. R. Turetsky, A.-M. Virkkala, C. Voigt, J. Watts, Q. Zhu, B. Zheng
{"title":"永冻土区温室气体预算表明二氧化碳吸收较弱,甲烷和一氧化二氮来源较多,但自上而下法和自下而上法得出的结果存在差异","authors":"G. Hugelius,&nbsp;J. Ramage,&nbsp;E. Burke,&nbsp;A. Chatterjee,&nbsp;T. L. Smallman,&nbsp;T. Aalto,&nbsp;A. Bastos,&nbsp;C. Biasi,&nbsp;J. G. Canadell,&nbsp;N. Chandra,&nbsp;F. Chevallier,&nbsp;P. Ciais,&nbsp;J. Chang,&nbsp;L. Feng,&nbsp;M. W. Jones,&nbsp;T. Kleinen,&nbsp;M. Kuhn,&nbsp;R. Lauerwald,&nbsp;J. Liu,&nbsp;E. López-Blanco,&nbsp;I. T. Luijkx,&nbsp;M. E. Marushchak,&nbsp;S. M. Natali,&nbsp;Y. Niwa,&nbsp;D. Olefeldt,&nbsp;P. I. Palmer,&nbsp;P. K. Patra,&nbsp;W. Peters,&nbsp;S. Potter,&nbsp;B. Poulter,&nbsp;B. M. Rogers,&nbsp;W. J. Riley,&nbsp;M. Saunois,&nbsp;E. A. G. Schuur,&nbsp;R. L. Thompson,&nbsp;C. Treat,&nbsp;A. Tsuruta,&nbsp;M. R. Turetsky,&nbsp;A.-M. Virkkala,&nbsp;C. Voigt,&nbsp;J. Watts,&nbsp;Q. Zhu,&nbsp;B. Zheng","doi":"10.1029/2023GB007969","DOIUrl":null,"url":null,"abstract":"<p>Large stocks of soil carbon (C) and nitrogen (N) in northern permafrost soils are vulnerable to remobilization under climate change. However, there are large uncertainties in present-day greenhouse gas (GHG) budgets. We compare bottom-up (data-driven upscaling and process-based models) and top-down (atmospheric inversion models) budgets of carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) as well as lateral fluxes of C and N across the region over 2000–2020. Bottom-up approaches estimate higher land-to-atmosphere fluxes for all GHGs. Both bottom-up and top-down approaches show a sink of CO<sub>2</sub> in natural ecosystems (bottom-up: −29 (−709, 455), top-down: −587 (−862, −312) Tg CO<sub>2</sub>-C yr<sup>−1</sup>) and sources of CH<sub>4</sub> (bottom-up: 38 (22, 53), top-down: 15 (11, 18) Tg CH<sub>4</sub>-C yr<sup>−1</sup>) and N<sub>2</sub>O (bottom-up: 0.7 (0.1, 1.3), top-down: 0.09 (−0.19, 0.37) Tg N<sub>2</sub>O-N yr<sup>−1</sup>). The combined global warming potential of all three gases (GWP-100) cannot be distinguished from neutral. Over shorter timescales (GWP-20), the region is a net GHG source because CH<sub>4</sub> dominates the total forcing. The net CO<sub>2</sub> sink in Boreal forests and wetlands is largely offset by fires and inland water CO<sub>2</sub> emissions as well as CH<sub>4</sub> emissions from wetlands and inland waters, with a smaller contribution from N<sub>2</sub>O emissions. Priorities for future research include the representation of inland waters in process-based models and the compilation of process-model ensembles for CH<sub>4</sub> and N<sub>2</sub>O. Discrepancies between bottom-up and top-down methods call for analyses of how prior flux ensembles impact inversion budgets, more and well-distributed in situ GHG measurements and improved resolution in upscaling techniques.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 10","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007969","citationCount":"0","resultStr":"{\"title\":\"Permafrost Region Greenhouse Gas Budgets Suggest a Weak CO2 Sink and CH4 and N2O Sources, But Magnitudes Differ Between Top-Down and Bottom-Up Methods\",\"authors\":\"G. Hugelius,&nbsp;J. Ramage,&nbsp;E. Burke,&nbsp;A. Chatterjee,&nbsp;T. L. Smallman,&nbsp;T. Aalto,&nbsp;A. Bastos,&nbsp;C. Biasi,&nbsp;J. G. Canadell,&nbsp;N. Chandra,&nbsp;F. Chevallier,&nbsp;P. Ciais,&nbsp;J. Chang,&nbsp;L. Feng,&nbsp;M. W. Jones,&nbsp;T. Kleinen,&nbsp;M. Kuhn,&nbsp;R. Lauerwald,&nbsp;J. Liu,&nbsp;E. López-Blanco,&nbsp;I. T. Luijkx,&nbsp;M. E. Marushchak,&nbsp;S. M. Natali,&nbsp;Y. Niwa,&nbsp;D. Olefeldt,&nbsp;P. I. Palmer,&nbsp;P. K. Patra,&nbsp;W. Peters,&nbsp;S. Potter,&nbsp;B. Poulter,&nbsp;B. M. Rogers,&nbsp;W. J. Riley,&nbsp;M. Saunois,&nbsp;E. A. G. Schuur,&nbsp;R. L. Thompson,&nbsp;C. Treat,&nbsp;A. Tsuruta,&nbsp;M. R. Turetsky,&nbsp;A.-M. Virkkala,&nbsp;C. Voigt,&nbsp;J. Watts,&nbsp;Q. Zhu,&nbsp;B. Zheng\",\"doi\":\"10.1029/2023GB007969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large stocks of soil carbon (C) and nitrogen (N) in northern permafrost soils are vulnerable to remobilization under climate change. However, there are large uncertainties in present-day greenhouse gas (GHG) budgets. We compare bottom-up (data-driven upscaling and process-based models) and top-down (atmospheric inversion models) budgets of carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) as well as lateral fluxes of C and N across the region over 2000–2020. Bottom-up approaches estimate higher land-to-atmosphere fluxes for all GHGs. Both bottom-up and top-down approaches show a sink of CO<sub>2</sub> in natural ecosystems (bottom-up: −29 (−709, 455), top-down: −587 (−862, −312) Tg CO<sub>2</sub>-C yr<sup>−1</sup>) and sources of CH<sub>4</sub> (bottom-up: 38 (22, 53), top-down: 15 (11, 18) Tg CH<sub>4</sub>-C yr<sup>−1</sup>) and N<sub>2</sub>O (bottom-up: 0.7 (0.1, 1.3), top-down: 0.09 (−0.19, 0.37) Tg N<sub>2</sub>O-N yr<sup>−1</sup>). The combined global warming potential of all three gases (GWP-100) cannot be distinguished from neutral. Over shorter timescales (GWP-20), the region is a net GHG source because CH<sub>4</sub> dominates the total forcing. The net CO<sub>2</sub> sink in Boreal forests and wetlands is largely offset by fires and inland water CO<sub>2</sub> emissions as well as CH<sub>4</sub> emissions from wetlands and inland waters, with a smaller contribution from N<sub>2</sub>O emissions. Priorities for future research include the representation of inland waters in process-based models and the compilation of process-model ensembles for CH<sub>4</sub> and N<sub>2</sub>O. Discrepancies between bottom-up and top-down methods call for analyses of how prior flux ensembles impact inversion budgets, more and well-distributed in situ GHG measurements and improved resolution in upscaling techniques.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"38 10\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007969\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007969\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007969","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

北方永冻土中大量的土壤碳(C)和氮(N)储量在气候变化下很容易被重新移动。然而,目前的温室气体(GHG)预算存在很大的不确定性。我们比较了自下而上(数据驱动的放大模型和基于过程的模型)和自上而下(大气反演模型)的二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)预算,以及 2000-2020 年整个地区的碳和氮的横向通量。自下而上的方法估计了所有温室气体从陆地到大气的较高通量。自下而上和自上而下的方法都显示了自然生态系统中的二氧化碳汇(自下而上:-29(-709,4);自上而下:-29(-709,4)):-29(-709,455),自上而下:-587(-862,-312)兆吨二氧化碳-年-1)和甲烷(CH4)的来源(自下而上:38(22,53)兆吨二氧化碳-年-1,自上而下:312兆吨甲烷-年-1):38 (22, 53), top-down:15 (11, 18) Tg CH4-C yr-1) 和 N2O (自下而上:0.7 (0.1, 0.2) Tg CO2-C yr-1) 的来源:0.7 (0.1, 1.3), top-down:0.09 (-0.19, 0.37) Tg N2O-N yr-1)。所有三种气体的综合全球变暖潜势(GWP-100)与中性无法区分。在较短的时间尺度上(GWP-20),该地区是温室气体净源,因为 CH4 在总强迫中占主导地位。北方森林和湿地的二氧化碳净吸收汇在很大程度上被火灾和内陆水域的二氧化碳排放以及湿地和内陆水域的甲烷排放所抵消,而一氧化二氮排放的贡献较小。未来研究的重点包括在基于过程的模型中表现内陆水域,以及汇编 CH4 和 N2O 的过程模型集合。自下而上和自上而下方法之间的差异要求分析先前的通量集合如何影响反演预算、更多和分布良好的原地温室气体测量,以及提高放大技术的分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Permafrost Region Greenhouse Gas Budgets Suggest a Weak CO2 Sink and CH4 and N2O Sources, But Magnitudes Differ Between Top-Down and Bottom-Up Methods

Permafrost Region Greenhouse Gas Budgets Suggest a Weak CO2 Sink and CH4 and N2O Sources, But Magnitudes Differ Between Top-Down and Bottom-Up Methods

Large stocks of soil carbon (C) and nitrogen (N) in northern permafrost soils are vulnerable to remobilization under climate change. However, there are large uncertainties in present-day greenhouse gas (GHG) budgets. We compare bottom-up (data-driven upscaling and process-based models) and top-down (atmospheric inversion models) budgets of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) as well as lateral fluxes of C and N across the region over 2000–2020. Bottom-up approaches estimate higher land-to-atmosphere fluxes for all GHGs. Both bottom-up and top-down approaches show a sink of CO2 in natural ecosystems (bottom-up: −29 (−709, 455), top-down: −587 (−862, −312) Tg CO2-C yr−1) and sources of CH4 (bottom-up: 38 (22, 53), top-down: 15 (11, 18) Tg CH4-C yr−1) and N2O (bottom-up: 0.7 (0.1, 1.3), top-down: 0.09 (−0.19, 0.37) Tg N2O-N yr−1). The combined global warming potential of all three gases (GWP-100) cannot be distinguished from neutral. Over shorter timescales (GWP-20), the region is a net GHG source because CH4 dominates the total forcing. The net CO2 sink in Boreal forests and wetlands is largely offset by fires and inland water CO2 emissions as well as CH4 emissions from wetlands and inland waters, with a smaller contribution from N2O emissions. Priorities for future research include the representation of inland waters in process-based models and the compilation of process-model ensembles for CH4 and N2O. Discrepancies between bottom-up and top-down methods call for analyses of how prior flux ensembles impact inversion budgets, more and well-distributed in situ GHG measurements and improved resolution in upscaling techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信