增强氧化铁电催化以实现高效整体水分离:针对先进能源生成和储存的定制合成研究

Energy Storage Pub Date : 2024-10-25 DOI:10.1002/est2.70062
Niharika Maley, Pratik Patel, Felipe M. de Souza, Anuj Kumar, Ram K. Gupta
{"title":"增强氧化铁电催化以实现高效整体水分离:针对先进能源生成和储存的定制合成研究","authors":"Niharika Maley,&nbsp;Pratik Patel,&nbsp;Felipe M. de Souza,&nbsp;Anuj Kumar,&nbsp;Ram K. Gupta","doi":"10.1002/est2.70062","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Water splitting, a critical milestone in the development of renewable energy, allows the production of pure hydrogen and oxygen. Iron oxide (Fe<sub>2</sub>O<sub>3</sub>), a fundamental component in electrochemical water splitting for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), offers potential because of its accessibility, low cost, and environmental safety. Herein, to analyze the impact of the methodology on its properties, Fe<sub>2</sub>O<sub>3</sub> was produced in three different ways: freeze-drying (aerogel) (Fe<sub>2</sub>O<sub>3</sub>-AG), hydrothermal (Fe<sub>2</sub>O<sub>3</sub>-HT), and microwave (Fe<sub>2</sub>O<sub>3</sub>-MW). The Fe<sub>2</sub>O<sub>3</sub>-AG outperformed Fe<sub>2</sub>O<sub>3</sub>-HT and Fe<sub>2</sub>O<sub>3</sub>-MW in most properties which showed improved current and overall water-splitting efficiency. The resulting materials demonstrated good electrocatalytic performance for both HER and OER in alkaline media, with overpotentials for HER of 204, 235, and 255 mV and overpotentials for OER of 222, 288, and 292 mV for the Fe<sub>2</sub>O<sub>3</sub>-AG, Fe<sub>2</sub>O<sub>3</sub>-HT, and Fe<sub>2</sub>O<sub>3</sub>-MW samples, respectively, at a current density of 10 mA/cm<sup>2</sup>. The freeze-drying synthesis process has significant potential as a feasible method for the manufacture of Fe<sub>2</sub>O<sub>3</sub>-based electrocatalysts for water-splitting applications. This study provides important insights into the influence of electrocatalytic and energy storage properties of Fe<sub>2</sub>O<sub>3</sub> based on the use of different methodologies, that is, hydrothermal, microwave-assisted, and freeze-drying. Through that, a more assertive analysis can be made concerning changes in morphology, conductivity, exposure of active area, and electrochemical stability which are crucial for the overall performance, hence providing valuable information and considerations for possible large-scale applications for energy generation and energy storage.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Iron Oxide Electrocatalysis for Efficient Overall Water Splitting: A Study of Tailored Synthesis for Advanced Energy Generation and Storage\",\"authors\":\"Niharika Maley,&nbsp;Pratik Patel,&nbsp;Felipe M. de Souza,&nbsp;Anuj Kumar,&nbsp;Ram K. Gupta\",\"doi\":\"10.1002/est2.70062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Water splitting, a critical milestone in the development of renewable energy, allows the production of pure hydrogen and oxygen. Iron oxide (Fe<sub>2</sub>O<sub>3</sub>), a fundamental component in electrochemical water splitting for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), offers potential because of its accessibility, low cost, and environmental safety. Herein, to analyze the impact of the methodology on its properties, Fe<sub>2</sub>O<sub>3</sub> was produced in three different ways: freeze-drying (aerogel) (Fe<sub>2</sub>O<sub>3</sub>-AG), hydrothermal (Fe<sub>2</sub>O<sub>3</sub>-HT), and microwave (Fe<sub>2</sub>O<sub>3</sub>-MW). The Fe<sub>2</sub>O<sub>3</sub>-AG outperformed Fe<sub>2</sub>O<sub>3</sub>-HT and Fe<sub>2</sub>O<sub>3</sub>-MW in most properties which showed improved current and overall water-splitting efficiency. The resulting materials demonstrated good electrocatalytic performance for both HER and OER in alkaline media, with overpotentials for HER of 204, 235, and 255 mV and overpotentials for OER of 222, 288, and 292 mV for the Fe<sub>2</sub>O<sub>3</sub>-AG, Fe<sub>2</sub>O<sub>3</sub>-HT, and Fe<sub>2</sub>O<sub>3</sub>-MW samples, respectively, at a current density of 10 mA/cm<sup>2</sup>. The freeze-drying synthesis process has significant potential as a feasible method for the manufacture of Fe<sub>2</sub>O<sub>3</sub>-based electrocatalysts for water-splitting applications. This study provides important insights into the influence of electrocatalytic and energy storage properties of Fe<sub>2</sub>O<sub>3</sub> based on the use of different methodologies, that is, hydrothermal, microwave-assisted, and freeze-drying. Through that, a more assertive analysis can be made concerning changes in morphology, conductivity, exposure of active area, and electrochemical stability which are crucial for the overall performance, hence providing valuable information and considerations for possible large-scale applications for energy generation and energy storage.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"6 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水分裂是可再生能源发展的一个重要里程碑,它可以生产纯氢和纯氧。氧化铁(Fe2O3)是电化学水分裂中氢进化反应(HER)和氧进化反应(OER)的基本成分,因其易得性、低成本和环境安全性而具有潜力。在此,为了分析制备方法对其特性的影响,我们用三种不同的方法制备了 Fe2O3:冷冻干燥(气凝胶)(Fe2O3-AG)、水热(Fe2O3-HT)和微波(Fe2O3-MW)。Fe2O3-AG 的大多数性能都优于 Fe2O3-HT和Fe2O3-MW,其电流和整体分水效率都有所提高。在 10 mA/cm2 的电流密度下,Fe2O3-AG、Fe2O3-HT 和 Fe2O3-MW 样品的 HER 和 OER 过电位分别为 204、235 和 255 mV,OER 过电位分别为 222、288 和 292 mV。冷冻干燥合成工艺作为制造基于 Fe2O3 的水分离应用电催化剂的可行方法,具有巨大的潜力。本研究提供了基于水热法、微波辅助法和冷冻干燥法等不同方法对 Fe2O3 的电催化和储能特性的影响的重要见解。通过这种方法,可以更准确地分析对整体性能至关重要的形态、电导率、活性区暴露和电化学稳定性的变化,从而为发电和储能的大规模应用提供有价值的信息和考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Iron Oxide Electrocatalysis for Efficient Overall Water Splitting: A Study of Tailored Synthesis for Advanced Energy Generation and Storage

Water splitting, a critical milestone in the development of renewable energy, allows the production of pure hydrogen and oxygen. Iron oxide (Fe2O3), a fundamental component in electrochemical water splitting for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), offers potential because of its accessibility, low cost, and environmental safety. Herein, to analyze the impact of the methodology on its properties, Fe2O3 was produced in three different ways: freeze-drying (aerogel) (Fe2O3-AG), hydrothermal (Fe2O3-HT), and microwave (Fe2O3-MW). The Fe2O3-AG outperformed Fe2O3-HT and Fe2O3-MW in most properties which showed improved current and overall water-splitting efficiency. The resulting materials demonstrated good electrocatalytic performance for both HER and OER in alkaline media, with overpotentials for HER of 204, 235, and 255 mV and overpotentials for OER of 222, 288, and 292 mV for the Fe2O3-AG, Fe2O3-HT, and Fe2O3-MW samples, respectively, at a current density of 10 mA/cm2. The freeze-drying synthesis process has significant potential as a feasible method for the manufacture of Fe2O3-based electrocatalysts for water-splitting applications. This study provides important insights into the influence of electrocatalytic and energy storage properties of Fe2O3 based on the use of different methodologies, that is, hydrothermal, microwave-assisted, and freeze-drying. Through that, a more assertive analysis can be made concerning changes in morphology, conductivity, exposure of active area, and electrochemical stability which are crucial for the overall performance, hence providing valuable information and considerations for possible large-scale applications for energy generation and energy storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信