多方量子 XOR 博弈中的量子纠缠力

IF 1 2区 数学 Q1 MATHEMATICS
Marius Junge, Carlos Palazuelos
{"title":"多方量子 XOR 博弈中的量子纠缠力","authors":"Marius Junge,&nbsp;Carlos Palazuelos","doi":"10.1112/jlms.70009","DOIUrl":null,"url":null,"abstract":"<p>We show that, given <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$k\\geqslant 3$</annotation>\n </semantics></math>, there exist <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-player quantum XOR games for which the entangled bias can be arbitrarily larger than the bias of the game when the players are restricted to separable strategies. In particular, quantum entanglement can be a much more powerful resource than local operations and classical communication to play these games. This result shows a strong contrast to the bipartite case, where it was recently proved that, as a consequence of a noncommutative version of Grothendieck theorem, the entangled bias is always upper bounded by a universal constant times the one-way classical communication bias. In this sense, our main result can be understood as a counterexample to an extension of such a noncommutative Grothendieck theorem to multilinear forms.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70009","citationCount":"0","resultStr":"{\"title\":\"On the power of quantum entanglement in multipartite quantum XOR games\",\"authors\":\"Marius Junge,&nbsp;Carlos Palazuelos\",\"doi\":\"10.1112/jlms.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that, given <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$k\\\\geqslant 3$</annotation>\\n </semantics></math>, there exist <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-player quantum XOR games for which the entangled bias can be arbitrarily larger than the bias of the game when the players are restricted to separable strategies. In particular, quantum entanglement can be a much more powerful resource than local operations and classical communication to play these games. This result shows a strong contrast to the bipartite case, where it was recently proved that, as a consequence of a noncommutative version of Grothendieck theorem, the entangled bias is always upper bounded by a universal constant times the one-way classical communication bias. In this sense, our main result can be understood as a counterexample to an extension of such a noncommutative Grothendieck theorem to multilinear forms.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70009\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70009","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,给定 k ⩾ 3 $k\geqslant 3$,存在 k $k$ -玩家量子 XOR 博弈,当玩家被限制为可分离策略时,其纠缠偏差可任意大于博弈偏差。特别是,在玩这些游戏时,量子纠缠可以成为比局部运算和经典通信更强大的资源。这一结果与二元对立的情况形成了强烈反差,在二元对立的情况下,最近有人证明,作为格罗滕第克定理的非交换版本的结果,纠缠偏差的上界总是一个通用常数乘以单向经典通信偏差。从这个意义上说,我们的主要结果可以理解为将这种非交换格罗thendieck定理扩展到多线性方程的一个反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the power of quantum entanglement in multipartite quantum XOR games

We show that, given k 3 $k\geqslant 3$ , there exist k $k$ -player quantum XOR games for which the entangled bias can be arbitrarily larger than the bias of the game when the players are restricted to separable strategies. In particular, quantum entanglement can be a much more powerful resource than local operations and classical communication to play these games. This result shows a strong contrast to the bipartite case, where it was recently proved that, as a consequence of a noncommutative version of Grothendieck theorem, the entangled bias is always upper bounded by a universal constant times the one-way classical communication bias. In this sense, our main result can be understood as a counterexample to an extension of such a noncommutative Grothendieck theorem to multilinear forms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信